精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≥4}\\{f(x+2),x<4}\end{array}\right.$,则f(2+log23)的值为(  )
A.6B.24C.36D.48

分析 运用对数的运算性质,结合函数的递推关系得到4+log23>4,代入对应的解析式,运用对数恒等式,计算即可得到所求值.

解答 解:由3<2+log23<4,得5<2+2+log23<6,
则f(2+log23)=f(4+log23)=2${\;}^{4+lo{g}_{2}3}$=24•2log23=16×3=48.
故选:D.

点评 本题考查函数值的计算和分段函数的应用,考查对数的运算性质,以及对数恒等式的运用,利用条件进行转化是解决本题的关键.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在极坐标系中,圆C的方程为ρ=2asinθ (a>0).以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,设直线l的参数方程为$\left\{{\begin{array}{l}{x=3t+1}\\{y=4t+3}\end{array}}\right.$(t为参数).
(Ⅰ)求圆C的标准方程和直线l的普通方程;
(Ⅱ)若直线l与圆C交于A,B两点,且$|{AB}|≥\sqrt{3}a$.求实数a的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x+2017,x>0}\\{-f(x+2),x≤0}\end{array}\right.$,则f(-2016)=-2018.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)定义在(0,$\frac{π}{2}$)上,f′(x)是它的导函数,且tanx•f(x)>f′(x)在定义域内恒成立,则(  )
A.$\sqrt{2}$f($\frac{π}{4}$)<f($\frac{π}{3}$)B.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)C.cos1•f(1)>$\frac{\sqrt{3}}{2}$f($\frac{π}{6}$)D.$\sqrt{2}$f($\frac{π}{4}$)<$\sqrt{3}$f($\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=$\left\{{\begin{array}{l}{ln(x+1)}&{(x≥0)}\\{{e^x}-1}&{(x<0)}\end{array}}$,若函数y=f(x)-kx恒有一个零点,则k的取值范围为(  )
A.k≤0B.k≤0或k≥1C.k≤0或k≥eD.k≤0或k≥$\frac{1}{e}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,网格上小正方形的边长为1,粗线画出的是一个三棱锥的三视图,该三棱锥的外接球的表面积记为S1,俯视图绕底边AB所在直线旋转一周形成的几何体的表面积记为S2,则S1:S2=(  )
A.4$\sqrt{2}$B.2$\sqrt{2}$C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知各项均为整数的数列{an}满足an2≤1,1≤a12+a22+…+an2≤m,m,n∈N*
(1)若m=1,n=2,写出所有满足条件的数列{an};
(2)设满足条件的{an}的个数为f(n,m).
①求f(2,2)和f(2016,2016);
②若f(m+1,m)>2016,试求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=(sinx+cosx)2+cos2x的单调增区间为$[kπ-\frac{3π}{8},kπ+\frac{π}{8}](k∈Z)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错不答都得0分,已知甲队3人每人答对的概率分别为$\frac{3}{4},\frac{2}{3},\frac{1}{2}$,乙队每人答对的概率都是$\frac{2}{3}$.设每人回答正确与否相互之间没有影响,用ξ表示甲队总得分.
(Ⅰ)求ξ=2概率;
(Ⅱ)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.

查看答案和解析>>

同步练习册答案