精英家教网 > 高中数学 > 题目详情

已知数列各项为非负实数,前n项和为,且
(1)求数列的通项公式;
(2)当时,求.

(1);(2)原式.

解析试题分析:(1)将给出的等式分解因式可得,然后利用数列中的关系求出,注意要验证当是否满足,若满足通项写出一个式子,若不满足须写出分段函数的形式;(2)由(1)已经求出,带入所求式子后裂项求和即可.
试题解析:(1)∵
又∵数列各项为非负实数 ∴
∴当时  
时 
.
(2)当时   


.
考点:利用的关系求、裂项求和法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

若数列{an}满足an+1=an+an+2(n∈N*),则称数列{an}为“凸数列”.
(1)设数列{an}为“凸数列”,若a1=1,a2=-2,试写出该数列的前6项,并求出前6项之和;
(2)在“凸数列”{an}中,求证:an+3=-an,n∈N*
(3)设a1=a,a2=b,若数列{an}为“凸数列”,求数列前2011项和S2011.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是正数组成的数列,,且点在函数的图象上.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是首项为,公差为的等差数列是其前项和.
(1)若,求数列的通项公式;
(2)记,且成等比数列,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知公差不为零的等差数列的前项和,且成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足,求的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的通项公式为,数列的前项和为,且满足
(1)求的通项公式;
(2)在中是否存在使得中的项,若存在,请写出满足题意的其中一项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

三个不同的数成等差数列,其和为6,如果将此三个数重新排列,他们又可以成等比数列,求这个等差数列。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若数列的前项和为,对任意正整数都有,记
(1)求,的值;
(2)求数列的通项公式;
(3)若求证:对任意

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设各项均为正数的数列的前项和为,满足构成等比数列.
(1) 证明:
(2) 求数列的通项公式;
(3) 证明:对一切正整数,有

查看答案和解析>>

同步练习册答案