精英家教网 > 高中数学 > 题目详情

【题目】某化工厂一种溶液的成品,生产过程的最后工序是过滤溶液中的杂质,过滤初期溶液含杂质为2%,每经过一次过滤均可使溶液杂质含量减少,记过滤次数为x)时溶液杂质含量为y.

1)写出yx的函数关系式;

2)按市场要求,出厂成品杂质含量不能超过0.1%,问至少经过几次过滤才能使产品达到市场要求?(参考数据:

【答案】1.28.

【解析】

1)根据题意得到每次过滤后所含的杂质是前一次的,从而列出函数关系式;(2)根据题意得到,解不等式,得到答案.

1)因为每经过一次过滤均可使溶液杂质含量减少

所以每次过滤后所含的杂质是前一次的

所以得到.

2)设至少应过滤次才能是产品达到市场要求,

所以

,所以.

即至少应过滤次才能使产品达到市场要求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点DD在平面PAB内的正投影为点E,连结PE并延长交AB于点G.

)证明:GAB的中点;

)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知ab是异面直线,给出下列结论:

一定存在平面,使直线平面,直线平面

一定存在平面,使直线平面,直线平面

一定存在无数个平面,使直线b与平面交于一个定点,且直线平面.

则所有正确结论的序号为(

A.②③B.①③C.①②D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为2的正方体中,设是棱的中点.

1)求证:

2)求证:平面

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 平面 .

1)证明

2)求二面角的余弦值;

3)设点为线段上一点,且直线平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,郑州经济快速发展,跻身新一线城市行列,备受全国瞩目.无论是市内的井字形快速交通网,还是辐射全国的米字形高铁路网,郑州的交通优势在同级别的城市内无能出其右.为了调查郑州市民对出行的满意程度,研究人员随机抽取了1000名市民进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中

1)求的值;

2)若按照分层抽样从[50,60),[60,70)中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在[50,60)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,为等边三角形,且平面平面中点.

1)求证:平面

2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】保险公司统计的资料表明:居民住宅区到最近消防站的距离x(单位:千米)和火灾所造成的损失数额y(单位:千元)有如下的统计资料:

距消防站距离x(千米)

1.8

2.6

3.1

4.3

5.5

6.1

火灾损失费用y(千元)

17.8

19.6

27.5

31.3

36.0

43.2

如果统计资料表明yx有线性相关关系,试求:

(Ⅰ)求相关系数(精确到0.01);

(Ⅱ)求线性回归方程(精确到0.01);

(III)若发生火灾的某居民区与最近的消防站相距10.0千米,评估一下火灾的损失(精确到0.01).

参考数据:

参考公式:相关系数 回归方程 中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

同步练习册答案