【题目】如图,在边长为4的正三角形中,E为边的中点,过E作于D.把沿翻折至的位置,连结.翻折过程中,其中正确的结论是( )
A.;
B.存在某个位置,使;
C.若,则的长是定值;
D.若,则四面体的体积最大值为
【答案】ACD
【解析】
根据线面垂直的性质判断A,B;取中点,可证明,从而可计算出,判断C;折叠过程中,不动,当到平面的距离最大时,四面体的体积最大,从而计算出最大体积后判断D.
由,,得平面,又平面,所以,A正确;
若存在某个位置,使,如图,连接,因为,所以,
连接,正中,,,所以平面,而平面,所以,由选项A的判断有,且,平面,平面,所以平面,又平面,所以,则,这是不可能的,事实上,B错;
设是中点,连接,则,所以,从而,是中点,所以,若,即,所以,所以,且由得,所以,
边长为4,则,,,为定值,C正确;
折叠过程中,不变,不动,当到平面的距离最大时,四面体的体积最大,由选项的判断知当平面时,到平面的距离最大且为,又,所以此最大值为,D正确.
故选:ACD.
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsinθ=2.
(1)M为曲线C1上的动点,点P在线段OM上,且满足,求点P的轨迹C2的直角坐标方程;
(2)曲线C2上两点与点B(ρ2,α),求△OAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为(为参数),直线,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求直线l和曲线C的极坐标方程;
(2)若直线与直线l相交于点A,与曲线C相交于不同的两点M,N.求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个正方体的平面展开图如图所示,在这个正方体中,点是棱的中点,,分别是线段,(不包含端点)上的动点,则下列说法正确的是( )
A.在点的运动过程中,存在
B.在点的运动过程中,存在
C.三棱锥的体积为定值
D.三棱锥的体积不为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的一个顶点为,右焦点为,且,其中为原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点满足,点在椭圆上(异于椭圆的顶点),直线与以为圆心的圆相切于点,且为线段的中点.求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程是(为参数),以原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为.
(Ⅰ)求直线的普通方程和曲线的直角坐标方程;
(Ⅱ)过原点的直线与直线交于点,与曲线交于、两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在四棱锥中,底面是边长为的正方形,是正三角形,CD平面PAD,E,F,G,O分别是PC,PD,BC,AD 的中点.
(Ⅰ)求证:PO平面;
(Ⅱ)求平面EFG与平面所成锐二面角的大小;
(Ⅲ)线段上是否存在点,使得直线与平面所成角为,若存在,求线段的长度;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com