精英家教网 > 高中数学 > 题目详情
设函数f(x)=
1
3
x3-
a
2
x2+bx+c,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,
(1)确定b,c的值;
(2)设曲线y=f(x)在点(x1,f(x1))及(x2,f(x2))处的切线都过点(0,2),证明:当x1≠x2时,f′(x1)≠f′(x2);
(3)若过点(0,2)可作曲线y=f(x)的三条不同切线,求a的取值范围.
分析:(1)由f(x)求得f(0)=c,由f′(x)求得f′(0)=b;再由切线方程为y=1,得出b、c的值.
(2)由y=f(x)的切线过点(0,2),写出切线方程,用反证法可以证明该方程满足题目中的条件.
(3)过点(0,2)作y=f(x)的三条切线,等价于方程2-f(t)=f'(t)(0-t)有三个相异的实根,等价于函数满足某些条件,利用导数有解函数,得出a的取值.
解答:解:(1)∵f(x)=
1
3
x3-
a
2
x2+bx+c,
∴f(0)=c,f′(x)=x2-ax+b,f′(0)=b;
又∵y=f(x)在点P(0,f(0))处的切线方程为y=1,
∴f(0)=1,f′(0)=0.
∴b=0,c=1.
(2)∵b=0,c=1时,f(x)=
1
3
x3-
a
2
x2+1,f′(x)=x2-ax.由于点(t,f(t))
处的切线方程为
y-f(t)=f'(t)(x-t),而点(0,2)在切线上,
∴2-f(t)=f'(t)(-t),
化简得
2
3
t3-
a
2
t2+1=0,即t满足的方程为
2
3
t3-
a
2
t2+1=0

下面用反证法证明.
假设f'(x1)=f'(x2),由于曲线y=f(x)在点(x1,f(x1))及(x2,f(x2))处的切线都过点(0,2),
则下列等式成立:
2
3
x
1
3
-
a
2
x
1
2
+1=0①
2
3
x
2
3
-
a
2
x
2
2
+1=0②
x12-ax1=x22-ax2

由③得x1+x2=a,
由①-②得x12+x1x2+x22=
3
4
a2④;
x12+x1x2+x22=(x1+x2)2-x1x2=a2-x1(a-x1)=x12-ax1+a2=(x1-
a
2
)
2
+
3
4
a2
3
4
a2
∴由④得x1=
a
2
,此时x2=
a
2
,这与x1≠x2矛盾,∴f′(x1)≠f′(x2).
(3)由(2)知,过点(0,2)可作y=f(x)的三条切线,等价于方程2-f(t)=f'(t)(0-t)有三个相异的实根,
即等价于方程
2
3
t3-
a
2
t2+1=0
有三个相异的实根;
设g(t)=
2
3
t3-
a
2
t2+1,
∴g′(t)=2t2-at=2t(t-
a
2
);
∵a>0,∴有
t (-∞,0) 0 (0,
a
2
)
a
2
(
a
2
,+∞)
g'(t) + 0 - 0 +
g(t) 极大值1 极小值1-
a3
24
由g(t)的单调性知:要使g(t)=0有三个相异的实根,当且仅当1-
a3
24
<0,
a>2
33

∴a的取值范围是(2
33
,+∞)
点评:本题考查了函数的单调性、极值、导数等基本知识,也考查了综合运用数学知识进行推理论证的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西模拟)设函数f(x)=
(
1
3
)
x
-8(x<0)
x2+x-1(x≥0)
,若f(a)>1,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)定义在实数集上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x-1,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为D,若对任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)在[0,1]上为非减函数,且满足以下三个条件:①f(0)=0;②f(
x
3
)=
1
2
f(x)
;③f(1-x)=2-f(x).则f(
1
3
)+f(
1
8
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•成都一模)设函数f(x)=ax3+bx2+cx,记f(x)的导函数是f(x).
(I)当a=-1,b=c=-1时,求函数f(x)的单调区间;
(II)当c=-a2(a>0)时,若函数f(x)的两个极值点x1、x2满足|x1-x2|=2,求b的取值范围;
(III)若a=-
1
3
令h(x)=|f(x)|,记h(x)在[-1,1]上的最大值为H,当b≥0,c∈R时,证明:H
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
 x3+bx2+cx(c<b<1)在x=1处取到一个极小值,且存在实数m,使f′(m)=-1,
①证明:-3<c≤-1;
②判断f′(m-4)的正负并加以证明;
③若f(x)在x∈[m-4,1]上的最大值等于
-2c
3
,求f(x)在x∈[m-4,1]上的最小值.

查看答案和解析>>

同步练习册答案