精英家教网 > 高中数学 > 题目详情
f(n)=1+
1
2
+
1
3
+…+
1
n
,是否存在g(n),使等式f(1)+f(2)+…+f(n-1)=g(n)f(n)-1
对n≥2的一切自然数都成立,并证明你的结论.
分析:先将f(1)+f(2)+f(3)+…+f(n)用f(n)表示,然后代入f(1)+f(2)+f(3)+…+f(n-1)=g(n)f(n)-1,即可求出g(n)的解析式.
解答:解:由于f(1)=1,f(2)=1+
1
2
,f(3)=1+
1
2
+
1
3
,…,f(n)=1+
1
2
+
1
3
+…+
1
n

所以f(1)+f(2)+f(3)+…+f(n-1)
=(n-1)×1+(n-2)×
1
2
+(n-3)×
1
3
+…+[n-(n-2)]×
1
n-2
+[n-(n-1)]×
1
n-1
 
=n[1+
1
2
+
1
3
+…+
1
n-1
]-(n-1),
而g(n)f(n)-1=g(n)(1+
1
2
+
1
3
+…+
1
n
)-1
故由等式f(1)+f(2)+…+f(n-1)=g(n)f(n)-1,
可得 n[1+
1
2
+
1
3
+…+
1
n-1
]-(n-1)=g(n)(1+
1
2
+
1
3
+…+
1
n
)-1,
解得g(n)=
n(
1
2
+
1
3
+
1
4
+…+
1
n-1
)+2
1+
1
2
+
1
3
+…+
1
n
=
n(1+
1
2
+
1
3
+…+
1
n
)+1
1+
1
2
+
1
3
+…+
1
n
=n+
1
1+
1
2
+
1
3
+…+
1
n

故存在g(n)满足条件,且通项公式为 g(n)=n+
1
1+
1
2
+
1
3
+…+
1
n
点评:本题主要考查数列的求和,以及存在性问题,同时考查了计算能力和转化能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(n)=1+
1
2
+
1
3
+…+
1
n
, g(n)=lnn  (n∈N*)

(1)设an=f(n)-g(n),求a1,a2,a3,并证明{an}为递减数列;
(2)是否存在常数c,使f(n)-g(n)>c对n∈N*恒成立?若存在,试找出c的一个值,并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(n)=1+
1
2
+
1
3
+
1
4
+…+
1
2n
,则f(k+1)-f(k)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

f(n)=1+
1
2
+
1
3
+…+
1
n
,则f(2k)变形到f(2k+1)需增添项数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

f(n)=1+
1
2
+
1
3
+…+
1
n
,那么f(2k+1)-f(2k)=
1
2k+1
+
1
2k+2
+…+
1
2k+1
1
2k+1
+
1
2k+2
+…+
1
2k+1

查看答案和解析>>

同步练习册答案