精英家教网 > 高中数学 > 题目详情

【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g)与尺寸x(mm)之间近似满足关系式y=axb(a,b为大于0的常数).现随机抽取6件合格产品,测得数据如下:

尺寸(mm)

38

48

58

68

78

88

质量(g)

16.8

18.8

20.7

22.4

24.0

25.5

对数据作了初步处理,相关统计量的值如表:

75.3

24.6

18.3

101.4

(Ⅰ)根据所给数据,求y关于x的回归方程;
(Ⅱ)按照某项指标测定,当产品质量与尺寸的比在区间( )内时为优等品.现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的分布列和期望.
附:对于一组数据(v1 , u1),(v2 , u2),…,(vn , un),其回归直线u=α+βv的斜率和截距的最小二乘估计分别为 = =

【答案】解:(Ⅰ)对y=axb(a,b>0)两边取科学对数得lny=blnx+lna,

令vi=lnxi,ui=lnyi得u=bv+lna,

=

ln . =1, =e,

故所求回归方程为

(Ⅱ)由

58,68,78,即优等品有3件,

ξ的可能取值是0,1,2,3,且

其分布列为:

ξ

0

1

2

3

P


【解析】(1)对y=axb(a,b>0)两边取科学对数得lny=blnx+lna,再令vi=lnxi,ui=lnyi得u=bv+lna,由最小二乘法求得系数 ,即可求出回归方程;(2)由题意得出ξ的可能取值是0,1,2,3,分别求得概率,列出分布列,求出数学期望.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)= 其中t>0,若函数g(x)=f[f(x)﹣1]有6个不同的零点,则实数t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱台DEF﹣ABC中,AB=2DE,G,H分别为AC,BC的中点.

(Ⅰ)求证:BD∥平面FGH;
(Ⅱ)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一袋中有红、黄、蓝三种颜色的小球各一个,每次从中取出一个,记下颜色后放回,当三种颜色的球全部取出时停止取球,则恰好取5次球时停止取球的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y= 与y=ln(1﹣x)的定义域分别为M、N,则M∪N=(  )
A.(1,2]
B.[1,2]
C.(﹣∞,1]∪(2,+∞)
D.(﹣∞,1)∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点M(﹣1,0)和N(1,0),若某直线上存在点P,使得|PM|+|PN|=4,则称该直线为“椭型直线”.现有下列直线:①x﹣2y+6=0;②x﹣y=0;③2x﹣y+1=0;④x+y﹣3=0.其中是“椭型直线”的是(  )
A.①③
B.①②
C.②③
D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx
(1)当a=1时,求f(x)的单调区间;
(2)若函数f(x)在(0, )上无零点,求a最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(  )
A.若a∈R,则“ <1”是“a>1”的必要不充分条件
B.“p∧q为真命题”是“p∨q为真命题”的必要不充分条件
C.若命题p:“x∈R,sinx+cosx≤ ”,则¬p是真命题
D.命题“x0∈R,使得x02+2x0+3<0”的否定是“x∈R,x2+2x+3>0”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为 ,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2α﹣2cosα=0.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.

查看答案和解析>>

同步练习册答案