精英家教网 > 高中数学 > 题目详情

【题目】为迎接2022年北京冬季奥运会,普及冬奥知识,某校开展了冰雪答题王冬奥知识竞赛活动.现从参加冬奥知识竞赛活动的学生中随机抽取了100名学生,将他们的比赛成绩(满分为100分)分为6组:得到如图所示的频率分布直方图.

(Ⅰ)求的值;

(Ⅱ)记表示事件从参加冬奥知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于80,估计的概率;

(Ⅲ)在抽取的100名学生中,规定:比赛成绩不低于80分为优秀,比赛成绩低于80分为非优秀.请在答题卡上将列联表补充完整,并判断是否有的把握认为比赛成绩是否优秀与性别有关

参考公式及数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(Ⅰ)(Ⅱ)0.35(Ⅲ)见解析,没有的把握认为比赛成绩是否优秀与性别有关

【解析】

(Ⅰ)根据频率直方图中所有小矩形的面积之和为1这一性质进行求解即可;

(Ⅱ)结合(1)的结论,求出比赛成绩不低于分的频率即可;

(Ⅲ)结合(2)的结论,先求出比赛成绩优秀的人数,这样可以完成列联表,再根据题中所给的公式求出的值,结合参考数据进行判断即可.

(Ⅰ)由题意可,解得

(Ⅱ)由(Ⅰ)知,则比赛成绩不低于80分的频率为,故从参加冬奥会知识竞赛活动的学生中随机抽取一名学生,该学生的比赛成绩不低于80分的频率约为0.35

(Ⅲ)由(Ⅱ)知,在抽取的100名学生中,比赛成绩优秀人,

由此可得完整的列联表:

优秀

非优秀

合计

男生

10

40

50

女生

25

25

50

合计

35

65

100

所以的观测值

所以没有的把握认为比赛成绩是否优秀与性别有关

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】AB两种品牌各三种车型20177月的销量环比(与20176月比较)增长率如下表:

A品牌车型

A1

A2

A3

环比增长率

-7.29%

10.47%

14.70%

B品牌车型

B1

B2

B3

环比增长率

-8.49%

-28.06%

13.25%

根据此表中的数据,有如下关于7月份销量的四个结论:①A1车型销量比B1车型销量多;

②A品牌三种车型总销量环比增长率可能大于14.70%;

③B品牌三款车型总销量环比增长率可能为正;

④A品牌三种车型总销量环比增长率可能小于B品牌三种车型总销量环比增长率.

其中正确结论的个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x|x2≥9},B={x|﹣1<x≤7},C={x||x﹣2|<4}.

(1)求A∩B及A∪C;

(2)若U=R,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一种电脑屏幕保护画面,只有符号“”和“”随机地反复出现,每秒钟变化一次,每次变化只出现“”和“”之一,其中出现“”的概率为,出现“”的概率为,若第次出现“”,则记;若第次出现“”,则记,记.

1)若,求的分布列及数学期望;

2)若,求=1234)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)试判断函数的单调性;

(Ⅱ)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一条直线上依次有三点.一只猎犬在点发现一大两小三只兔子从点向兔穴(点)前行,立即向它们追去.当兔子发现猎犬追赶后,急忙向兔穴奔跑,大兔为了提高速度,可叼着一只小兔奔跑(速度不变,且叼起与放下小兔所耽误的时间不计).已知,猎犬、大兔、小兔奔跑的速度分别为,兔子前行的速度为.则三只兔子至多在离开点______时发现猎犬,才能恰在猎犬追上自己之前全部跑进兔穴.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是函数的导函数.

1)若,求证:对任意

2)若函数有两个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:

愿意

不愿意

男生

60

20

女士

40

40

1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关;

2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取5人.若从这5人中随机选取3人到火车站迎接新生,求选取的3人中恰好有1名女生的概率.

附:,其中

0.05

0.01

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,点,点是圆上的一个动点,点分别在线段上,且满足.

1)求点的轨迹方程;

2)过点作斜率为的直线与点的轨迹相交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形?如果存在,求出的取值范围;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案