精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=|x+1||2x2|的最大值为M,正实数ab满足a+bM

1)求2a2+b2的最小值;

2)求证:aabbab

【答案】1;(2)详见解析.

【解析】

1)去绝对值得分段函数:,由单调性易求函数fx)的最大值,即有M的值,再由柯西不等式,即可得到所求最小值;

2)应用分析法证明,考虑两边取自然对数,结合因式分解和不等式的性质、对数的性质,即可得证.

解:(1)函数

在(1)上单调递增,在(1,+)上单调递减,

x1时,fx)取得最大值

M2

正实数ab满足a+b2

由柯西不等式可得(2a2+b2)(1)≥(ab2

化为2a2+b2

所以当,即ba时,2a2+b2取得最小值

2)证明:因为a+b2ab0,要证aabbab,即证alna+blnblna+lnb

即证(a1lna≥(1blnb

即证(a1lna≥(a1ln2a),

即证(1aln1)≥0

0a1时,11,所以ln1)>0

1a0,可得(1aln1)>0

a1时,(1aln1)=0

1a2时,011,所以ln1)<0

因为1a0,所以(1aln1)>0

综上所述,(1aln1)≥0成立,即aabbab.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】新冠肺炎疫情造成医用防护服紧缺,当地政府决定为防护服生产企业A公司扩大生产提供(万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A公司在收到政府x(万元)补贴后,防护服产量将增加到(万件),其中k为工厂工人的复工率A公司生产t万件防护服还需投入成本(万元).

1)将A公司生产防护服的利润y(万元)表示为补贴x(万元)的函数;

2)对任意的(万元),当复工率k达到多少时,A公司才能不产生亏损?(精确到0.01

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为椭圆的左、右焦点,为该椭圆的一条垂直于轴的动弦,直线轴交于点,直线与直线的交点为.

1)证明:点恒在椭圆.

2)设直线与椭圆只有一个公共点,直线与直线相交于点,在平面内是否存在定点,使得恒成立?若存在,求出该点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点为正常数),轴负半轴上的一个动点,动点满足,且线段的中点在轴上.

1)求动点的轨迹的方程;

2)设为曲线的一条动弦(不垂直于轴).其垂直平分线与轴交于点.时,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,侧面BB1C1C为菱形,

1)求证:B1CAB

2)若∠CBB160°,ACBC,且点A在侧面BB1C1C上的投影为点O,求二面角BAA1C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E,过右焦点F的直线l与椭圆E交于AB两点(AB两点不在x轴上),椭圆EAB两点处的切线交于P,点P在定直线.

1)记点,求过点与椭圆E相切的直线方程;

2)以为直径的圆过点F,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,PQMNHR是各条棱的中点.

①直线平面;②;③PQHR四点共面;④平面.其中正确的个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)设曲线轴正半轴交于点,求曲线在该点处的切线方程;

(Ⅱ)设方程有两个实数根,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正四棱锥PABCD的底面边长为2,侧棱长为2,过点A作一个与侧棱PC垂直的平面α,则平面α被此正四棱锥所截的截面面积为_____,平面α将此正四棱锥分成的两部分体积的比值为_____.

查看答案和解析>>

同步练习册答案