设数列的前项和为,,.证明:数列是公比为的等比数列的充要条件是.
证明见解析
解析试题分析:要解决这个问题,首先要分清楚必要性和充分性.
由数列的前项和为,,,数列是公比为的等比数列 .
说明:“数列是公比为的等比数列”的必要条件是:“”
由“数列的前项和”“数列是等比数列”
说明“数列是公比为的等比数列”的充分条件是:“”
前者其实就是等比数列前项和公式推导过程的一部分;后者由求出的表达式 ,再紧扣等比数列的定义得出结论.
试题解析:证明:(1)必要性:
∵数列是公比为的等比数列
∴
① 2分
①式两边同乘,得
② 4分
①-②,得
6分
∵
∴ 7分
(2)充分性:
由,得 8分
∴
即 10分
∵也适合上式
∴ 12分
∵
∴当时,
∴数列是公比为的等比数列 14分
考点:1、充要条件的概念;2、等比数列的定义;3、在数列中 与的关系.
科目:高中数学 来源: 题型:解答题
等比数列{cn}满足cn+1+cn=10·4n-1(n∈N*),数列{an}的前n项和为Sn,且an=log2cn.
(1)求an,Sn;
(2)数列{bn}满足bn=,Tn为数列{bn}的前n项和,是否存在正整数m(m>1),使得T1,Tm,T6m成等比数列?若存在,求出所有m的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设等比数列{an}的前n项和为Sn,a4=a1-9,a5,a3,a4成等差数列.
(1)求数列{an} 的通项公式;
(2)证明:对任意k∈N*,Sk+2,Sk,Sk+1成等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知数列{an}的前n项和是Sn,且Sn+an=1.
(1)求数列{an}的通项公式;
(2)记bn=log3,数列的前n项和为Tn,证明:Tn<.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com