(本小题满分13分)已知数列的前项和是,且 .
(Ⅰ)求数列的通项公式;
(Ⅱ)记,求数列的前项和 .
(Ⅰ); (Ⅱ)。
解析试题分析:(I)先令n=1,得,从而得到.
然后再令时,由得:,两式相减得:
即,从而确定为等比数列,问题得解.
(II)在(I)的基础上,可求出,显然应采用错位相减的方法求和即可.
(Ⅰ)当时, ,,∴; ………… 2分
当时,由得:
两式相减得:
即,又 , ……………… 5分
∴数列是以为首项,为公比的等比数列. ………………… 6分
………………… 7分
(Ⅱ)由(Ⅰ)知 , ………………… 8分
∴ …………………①
…………②
由①-②得:
…………………9分
………………… 12分
………………… 13分
考点: 由an与Sn的关系求出an,等比数列的定义,通项公式,错位相减法求和.
点评:(I)再由Sn求an时,应先确定a1,然后再根据,求时,an.
(II)当一个数列的通项是一个等差数列与一个等比数列积时,可以采用错位相减法求和.
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知曲线:,数列的首项,且当时,点恒在曲线上,数列满足。
(1)试判断数列是否是等差数列?并说明理由;
(2)求数列和的通项公式;
(3)设数列满足,试比较数列的前项和与2的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)(注意:在试题卷上作答无效)
已知曲线,从上的点作轴的垂线,交于点,再从点作轴的垂线,交于点,设
(1)求数列的通项公式;
(2)记,数列的前项和为,试比较与的大小;
(3)记,数列的前项和为,试证明:
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某少数民族的刺绣有着悠久的历史,如下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形.
(1)求出的值;
(2)利用合情推理的“归纳推理思想”,归纳出与之间的关系式,并根据你得到的关系式求出的表达式;
(3)求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com