精英家教网 > 高中数学 > 题目详情
如图,椭圆C:=1(a>b>0)的离心率为,其左焦点到点P(2,1)的距离为.不过原点O的直线l与C相交于A,B两点,且线段AB被直线OP平分.

(1)求椭圆C的方程;
(2)求△ABP面积取最大值时直线l的方程.
(1)=1(2)3x+2y+2-2=0.
(1)设椭圆左焦点为F(-c,0),则由题意得
所以椭圆方程为=1.
(2)设A(x1,y1),B(x2,y2),线段AB的中点为M.当直线AB与x轴垂直时,直线AB的方程为x=0,与不过原点的条件不符,舍去.故可设直线AB的方程为y=kx+m(m≠0),由消去y,整理得(3+4k2)x2+8kmx+4m2-12=0,①
则Δ=64k2m2-4(3+4k2)(4m2-12)>0,
所以线段AB的中点为M.
因为M在直线OP:y=x上,所以,得m=0(舍去)或k=-.
此时方程①为3x2-3mx+m2-3=0,则Δ=3(12-m2)>0,,所以AB=·|x1-x2|=·,设点P到直线AB的距离为d,则d=
.设△ABP的面积为S,则S=AB·d=.其中m∈(-2,0)∪(0,2).令u(m)=(12-m2)(m-4)2,m∈[-2,2],u′(m)=-4(m-4)(m2-2m-6)=-4(m-4)·(m-1-)(m-1+).所以当且仅当m=1-时,u(m)取到最大值.故当且仅当m=1-时,S取到最大值.综上,所求直线l的方程为3x+2y+2-2=0
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率,长轴的左右端点分别为
(1)求椭圆的方程;
(2)设动直线与曲线有且只有一个公共点,且与直线相交于点.问在轴上是否存在定点,使得以为直径的圆恒过定点,若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是椭圆E:的两个焦点,抛物线的焦点为椭圆E的一个焦点,直线y=上到焦点F1,F2距离之和最小的点P恰好在椭圆E上,

(1)求椭圆E的方程;
(2)如图,过点的动直线交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,点P到两圆C1与C2的圆心的距离之和等于4,其中C1,C2. 设点P的轨迹为
(1)求C的方程;
(2)设直线与C交于A,B两点.问k为何值时?此时的值是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设E:=1(a>b>0)的焦点为F1与F2,且P∈E,∠F1PF2=2θ.求证:△PF1F2的面积S=b2tanθ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,已知定点A(-4,0)、B(4,0),动点P与A、B连线的斜率之积为-.
(1)求点P的轨迹方程;
(2)设点P的轨迹与y轴负半轴交于点C.半径为r的圆M的圆心M在线段AC的垂直平分线上,且在y轴右侧,圆M被y轴截得的弦长为r.
(ⅰ)求圆M的方程;
(ⅱ)当r变化时,是否存在定直线l与动圆M均相切?如果存在,求出定直线l的方程;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线E:ax2+by2=1(a>0,b>0),经过点M的直线l与曲线E交于点A、B,且=-2.
(1)若点B的坐标为(0,2),求曲线E的方程;
(2)若a=b=1,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知△OFQ的面积为S,且·=1.设||=c(c≥2),S=c.若以O为中心,F为一个焦点的椭圆经过点Q,当||取最小值时,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆和双曲线有相同的焦点,点为椭圆和双曲线的一个交点,则的值为(     )
A.16B.25C.9D.不为定值

查看答案和解析>>

同步练习册答案