【题目】(本题满分12分)已知椭圆,直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为.
(Ⅰ)证明:直线的斜率与的斜率的乘积为定值;
(Ⅱ)若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率,若不能,说明理由.
【答案】(Ⅰ)详见解析;(Ⅱ)能,或.
【解析】
试题分析:(1)设直线 ,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线的斜率,再表示;
(2)第一步由 (Ⅰ)得的方程为.设点的横坐标为,直线与椭圆方程联立求点的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足,的条件就说明存在,否则不存在.
试题解析:解:(1)设直线 ,,,.
∴由得,
∴,.
∴直线的斜率,即.
即直线的斜率与的斜率的乘积为定值.
(2)四边形能为平行四边形.
∵直线过点,∴不过原点且与有两个交点的充要条件是,
由 (Ⅰ)得的方程为.设点的横坐标为.
∴由得,即
将点的坐标代入直线的方程得,因此.
四边形为平行四边形当且仅当线段与线段互相平分,即
∴ .解得,.
∵,,,
∴当的斜率为或时,四边形为平行四边形.
科目:高中数学 来源: 题型:
【题目】某品牌新款夏装即将上市,为了对新款夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:
连锁店 | A店 | B店 | C店 | |||
售价x(元) | 80 | 86 | 82 | 88 | 84 | 90 |
销量y(元) | 88 | 78 | 85 | 75 | 82 | 66 |
(1)分别以三家连锁店的平均售价与平均销量为散点,如A店对应的散点为,求出售价与销量的回归直线方程;
(2)在大量投入市场后,销量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该新夏装在销售上获得最大利润,该款夏装的单价应定为多少元?(保留整数)
附:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数,若存在区间,使得,则称函数为“可等域函数”,区间为函数的一个“可等域区间”.给出下列4个函数:
①;②; ③; ④.
其中存在唯一“可等域区间”的“可等域函数”为( )
(A)①②③ (B)②③ (C)①③ (D)②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,有一个长方体形状的敞口玻璃容器,底面是边长为20cm的正方形,高为30cm,内有20cm深的溶液.现将此容器倾斜一定角度(图②),且倾斜时底面的一条棱始终在桌面上(图①、②均为容器的纵截面).
(1)要使倾斜后容器内的溶液不会溢出,角的最大值是多少?
(2)现需要倒出不少于的溶液,当时,能实现要求吗?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的单调区间;
(Ⅱ)已知f(x)在x=1处取得极大值.求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率,左、右焦点分别为, ,点满足: 在线段的中垂线上.
(Ⅰ)求椭圆的方程;
(Ⅱ)若斜率为()的直线与轴、椭圆顺次相交于点、、,且,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某品牌新款夏装即将上市,为了对新款夏装进行合理定价,在该地区的三家连锁店各进行了两天试销售,得到如下数据:
连锁店 | A店 | B店 | C店 | |||
售价x(元) | 80 | 86 | 82 | 88 | 84 | 90 |
销量y(元) | 88 | 78 | 85 | 75 | 82 | 66 |
(1)分别以三家连锁店的平均售价与平均销量为散点,如A店对应的散点为,求出售价与销量的回归直线方程;
(2)在大量投入市场后,销量与单价仍然服从(1)中的关系,且该夏装成本价为40元/件,为使该新夏装在销售上获得最大利润,该款夏装的单价应定为多少元?(保留整数)
附:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一次考试中,五名学生的数学、物理成绩如下表所示:
学生 | A1 | A2 | A3 | A4 | A5 |
数学(x分) | 89 | 91 | 93 | 95 | 97 |
物理(y分) | 87 | 89 | 89 | 92 | 93 |
(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;
(2)请在所给的直角坐标系中画出它们的散点图,并求这些数据线性回归方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com