精英家教网 > 高中数学 > 题目详情

【题目】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立

(1)记20件产品中恰有2件不合格品的概率为,的最大值点

(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用

(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;

(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?

【答案】(1).

(2) (i)490.

(ii)应该对余下的产品作检验.

【解析】分析:(1)利用独立重复实验成功次数对应的概率,求得之后对其求导,利用导数在相应区间上的符号,确定其单调性,从而得到其最大值点,这里要注意的条件;

(2)先根据第一问的条件,确定出,在解(i)的时候,先求件数对应的期望,之后应用变量之间的关系,求得赔偿费用的期望;在解(ii)的时候,就通过比较两个期望的大小,得到结果.

详解:(1)20件产品中恰有2件不合格品的概率为.因此

.

,得.时,;当时,.

所以的最大值点为.

(2)由(1)知,.

(i)令表示余下的180件产品中的不合格品件数,依题意知,即.

所以.

(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400.

由于,故应该对余下的产品作检验.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时,

(1)求概率

(2)求的分布列,并求其数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程为ρ4cosθ,以极点为原点,极轴为x轴正半轴建立平面直角坐标系,设直线l的参数方程为t为参数).

1)求曲线C的直角坐标方程与直线l的普通方程;

2)设曲线C与直线l相交于PQ两点,以PQ为一条边作曲线C的内接矩形,求该矩形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,在新高考改革中,打破文理分科的“”模式初露端倪,其中语、数、外三门课为必考科目,剩下三门为选考科目选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分,假定省规定:选考科目按考生成绩从高到低排列,按照占总体分别赋分分、分、分、分,为了让学生们体验赋分制计算成绩的方法,省某高中高一()班(共人)举行了以此摸底考试(选考科目全考,单料全班排名),知这次摸底考试中的物理成绩(满分分)频率分布直方图,化学成绩(满分分)茎叶图如图所示,小明同学在这次考试中物理分,化学多分.

(1)采用赋分制后,求小明物理成绩的最后得分;

(2)若小明的化学成绩最后得分为分,求小明的原始成绩的可能值;

(3)若小明必选物理,其他两科从化学、生物、历史、地理、政治五科中任选,求小明此次考试选考科目包括化学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为.

(1)求出圆的直角坐标方程;

(2)已知圆轴相交于 两点,直线 关于点对称的直线为.若直线上存在点使得,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从批量较大的产品中随机取出10件产品进行质量检测,若这批产品的不合格率为0.05,随机变量表示这10件产品中的不合格产品的件数.

1)问:这10件产品中“恰好有2件不合格的概率”和“恰好有3件不合格的概率”哪个大?请说明理由;

2)求随机变量的数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将4本不同的书随机放入如图所示的编号为1,2,3,4的四个抽屉中.

1

2

3

4

(Ⅰ)求4本书恰好放在四个不同抽屉中的概率;

(Ⅱ)随机变量表示放在2号抽屉中书的本数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的方程为:,过点的直线的参数方程为为参数).

1)求直线的普通方程与曲线的直角坐标方程;

2)若直线与曲线交于两点,求的值,并求定点两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fxa2xkRa0e为自然对数的底数),且曲线fx)在点(1f1))处的切线的斜率为e2a2

1)求实数k的值,并讨论函数fx)的单调性;

2)设函数gx,若对x1∈(0+∞),x2R,使不等式fx2gx1)﹣1成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案