精英家教网 > 高中数学 > 题目详情

(本小题共13分)已知椭圆的右焦点为为椭圆的上顶点,为坐标原点,且△是等腰直角三角形.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点分别作直线交椭圆于两点,设两直线的斜率分别为,且,证明:直线过定点().

 

【答案】

解:(Ⅰ)由△是等腰直角三角形,得

故椭圆方程为.                        …………5分

(Ⅱ)若直线的斜率存在,设方程为,依题意

 得 .      ………7分

.                       

由已知

所以

.                                ………10分

所以,整理得

故直线的方程为,即

所以直线过定点().                            ………12分

若直线的斜率不存在,设方程为

由已知

.此时方程为,显然过点().

综上,直线过定点().                    ………13分

【解析】本题考查椭圆的方程和直线与椭圆的相交问题,考查学生利用待定系数法和解析法的解题能力. 待定系数法:如果题目给出是何曲线,可根据题目条件,恰当的设出曲线方程,然后借助条件进一步确定求椭圆的标准方程应从“定形”“定式”“定量”三个方面去思考。“定形”是指对称中心在原点,焦点在哪条对称轴上;“定式”是指根据“形”设出相应的椭圆方程的具体形式;“定量”是指利用定义法或待定系数法确定的值.本题第一问利用椭圆的离心率和直线与椭圆相切判别式为0得到两个等式求解的值;关于直线与圆锥曲线位置关系的存在性问题,一般先假设存在满足题意的元素,经过推理论证,如果得到可以成立的结果,就可以作出存在的结论;若得到与已知条件、定义、公理、定理、性质相矛盾的量,则说明假设不成立.本题的第二问就是利用这个解题思路,借助韦达定理和距离公式进行转化和探索.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题共13分)

已知函数的反函数为,数列满足:

函数的图象在点处的切线在轴上的截距为

(1)求数列{}的通项公式;

(2)若数列的项仅最小,求的取值范围;

(3)令函数,数列满足:,且

,其中.证明:

查看答案和解析>>

科目:高中数学 来源:2011年普通高中招生考试北京市高考理科数学 题型:解答题

(本小题共13分)
已知函数
(Ⅰ)求的最小正周期:
(Ⅱ)求在区间上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源:2011年普通高中招生考试北京市高考理科数学 题型:解答题

(本小题共13分)

已知函数

(Ⅰ)求的单调区间;

(Ⅱ)若对于任意的,都有,求的取值范围。

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市海淀区高三下学期期中考试数学理卷 题型:解答题

(本小题共13分)

已知每项均是正整数的数列,其中等于的项有

  .

(Ⅰ)设数列,求

(Ⅱ)若数列满足,求函数的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年北京市丰台区高三下学期统一练习数学理卷 题型:解答题

(本小题共13分)

已知函数为函数的导函数.

(Ⅰ)设函数f(x)的图象与x轴交点为A,曲线y=f(x)在A点处的切线方程是,求的值;

(Ⅱ)若函数,求函数的单调区间.

 

查看答案和解析>>

同步练习册答案