【题目】定义域和值域均为(常数)的函数和y=g(x)的图像如图所示,给出下列四个命题:
(1)方程有且仅有三个解;
(2)方程有且仅有三个解;
(3)方程有且仅有九个解;
(4)方程有且仅有一个解;
那么,其中正确命题的个数是( )
A. 1B. 2C. 3D. 4
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中, 圆为 的内切圆.其中.
(1)求圆的方程及 点坐标;
(2)在直线 上是否存在异于的定点使得对圆上任意一点,都有为常数 )?若存在,求出点 的坐标及的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数满足:对于任意正数,都有,且,则称函数为“L函数”.
(1)试判断函数与是否是“L函数”;
(2)若函数为“L函数”,求实数a的取值范围;
(3)若函数为“L函数”,且,求证:对任意,都有.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数满足:
①;②在区间内有最大值无最小值;
③在区间内有最小值无最大值;④经过
(1)求的解析式;
(2)若,求值;
(3)不等式的解集不为空集,求实数的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的顶点为,左、右焦点分别为、,过点A且斜率为的直线与y轴交于点P,与椭圆交于另一个点B,且点B在x轴上的射影恰好为点.
(1)求椭圆C的标准方程;
(2)M为椭圆C上一动点,是椭圆C长轴上的一个点,直线MQ与椭圆C的另一个交点为N,令,若t值与点M的位置无关,则称此时的点Q为“稳定点”,试求出所有“稳定点”,若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣alnx,a>0.
(1)若f(x)在x=1处取得极值,求实数a的值;
(2)求f(x)在区间[2,+∞)上的最小值;
(3)在(1)的条件下,若g(x)=x2﹣f(x),求证:当1<x<e2,恒有x.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com