精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且PA=PD= AD,若E、F分别为PC、BD的中点. (Ⅰ) 求证:EF∥平面PAD;
(Ⅱ) 求证:EF⊥平面PDC.

【答案】证明:(Ⅰ)连接AC,则F是AC的中点,在△CPA中,EF∥PA 且PA平面PAD,EF平面PAD,
∴EF∥平面PAD
(Ⅱ)因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
又CD⊥AD,所以CD⊥平面PAD,
∴CD⊥PA
又PA=PD= AD,
所以△PAD是等腰直角三角形,且∠APD= ,即PA⊥PD
而CD∩PD=D,
∴PA⊥平面PDC,又EF∥PA,所以EF⊥平面PDC
【解析】对于(Ⅰ),要证EF∥平面PAD,只需证明EF平行于平面PAD内的一条直线即可,而E、F分别为PC、BD的中点,所以连接AC,EF为中位线,从而得证;对于(Ⅱ)要证明EF⊥平面PDC,由第一问的结论,EF∥PA,只需证PA⊥平面PDC即可,已知PA=PD= AD,可得PA⊥PD,只需再证明PA⊥CD,而这需要再证明CD⊥平面PAD,由于ABCD是正方形,面PAD⊥底面ABCD,由面面垂直的性质可以证明,从而得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】重庆一中为了增强学生的记忆力和辨识力,组织了一场类似《最强大脑》的赛,两队各由4名选手组成,每局两队各派一名选手,除第三局胜者得2分外,其余各局胜者均得1分,每局的负者得0分.假设每局比赛队选手获胜的概率均为,且各局比赛结果相互独立,比赛结束时队的得分高于队的得分的概率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设为抛物线上不同的四点,且点关于轴对称,平行于该抛物线在点处的切线.

(1)求证:直线与直线的倾斜角互补;

(2)若,且的面积为16,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若是函数的极值点,求的值及函数的极值;

(2)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要得到函数的图象, 只需将函数的图象(

A. 所有点的横坐标伸长到原来的2(纵坐标不变), 再将所得的图像向左平移个单位.

B. 所有点的横坐标伸长到原来的2(纵坐标不变), 再将所得的图像向左平移个单位.

C. 所有点的横坐标缩短到原来的(纵坐标不变), 再将所得的图像向左平移个单位.

D. 所有点的横坐标缩短到原来的(纵坐标不变), 再将所得的图像向左平移个单位.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用,已知每服用克的药剂,药剂在血液中的含量随着时间小时变化的函数关系式近似为,其中

若病人一次服用9克的药剂,则有效治疗时间可达多少小时?

若病人第一次服用6克的药剂,6个小时后再服用3m克的药剂,要使接下来的2小时中能够持续有效治疗,试求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱ABC-A1B1C1,DAC中点且直线AB1与平面BCC1B1所成的角为300,则异面直线AB1BD所成角的大小为 ( )

A. 300

B. 450

C. 600

D. 900

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =( sin ,1), =(cos ,cos2 ). (Ⅰ)若 =1,求cos( ﹣x)的值;
(Ⅱ)记f(x)= ,在△ABC中,A、B、C的对边分别为a、b、c,且满足(2a﹣c)cosB=bcosC,求函数f(A)的取值范围.

查看答案和解析>>

同步练习册答案