精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=$\frac{a}{3}$x3-$\frac{a+1}{2}$x2+x+b,其中a,b∈R.
(Ⅰ)若函数y=f(x)的极小值为4,且在点x=$\frac{1}{3}$处取到极大值,求函数f(x)的解析式;
(Ⅱ)当a>0时,讨论函数f(x)的单调性.

分析 (Ⅰ)求出函数的导数,根据f(1)=4,f′($\frac{1}{3}$)=0,得到关于a,b的方程组,解出即可;
(Ⅱ)求出函数的导数,通过讨论a的范围,解关于导函数的不等式,求出函数的单调区间即可.

解答 解:(Ⅰ)∵f′(x)=(ax-1)(x-1),f(1)=4,f′($\frac{1}{3}$)=0,
则$\left\{\begin{array}{l}{\frac{a}{3}-\frac{a+1}{2}+1+b=4}\\{\frac{a}{9}-\frac{a+1}{3}+1=0}\end{array}\right.$,
解得:a=3,b=4,
∴f(x)=x3-2x2+x+4;
(Ⅱ)由(Ⅰ)f′(x)=(ax-1)(x-1),
(1)0<a<1时,$\frac{1}{a}$>1,
令f′(x)>0,解得:x>$\frac{1}{a}$或x<1,
令f′(x)<0,解得:1<x<$\frac{1}{a}$,
故f(x)在(-∞,1)递增,在(1,$\frac{1}{a}$)递减,在($\frac{1}{a}$,+∞)递增,
(2)a=1时,f′(x)≥0,f(x)在R递增,
(3)a>1时,$\frac{1}{a}$<1,
令f′(x)>0,解得:x<$\frac{1}{a}$或x>1,
令f′(x)<0,解得:$\frac{1}{a}$<x<1,
故f(x)在(-∞,$\frac{1}{a}$)递增,在($\frac{1}{a}$,1)递减,在(1,+∞)递增.

点评 本题考查了函数的单调性问题,考查导数的应用以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的上下两个焦点分别为F1,F2,过点F1与y轴垂直的直线交椭圆C于M,N两点,△MNF2的面积为$\sqrt{3}$,椭圆C的离心率为$\frac{\sqrt{3}}{2}$
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知O为坐标原点,直线l:y=kx+m与y轴交于点P,与椭圆C交于A,B两个不同的点,若存在实数λ,使得$\overrightarrow{OA}$+λ$\overrightarrow{OB}$=4$\overrightarrow{OP}$,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知g(x)=x2-2ax+1在区间[1,3]上的值域[0,4].
(1)求a的值;
(2)若不等式g(2x)-k•4x≥0在x∈[1,+∞)上恒成立,求实数k的取值范围;
(3)若函数$y=\frac{{g(|{2^x}-1|)}}{{|{2^x}-1|}}+k•\frac{2}{{|{2^x}-1|}}-3k$有三个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设椭圆C1的中心和抛物线C2的顶点均为原点O,C1、C2的焦点均在x轴上,在C1、C2上各取两个点,将其坐标记录于表格中:
(1)求C1、C2的标准方程;
(2)过C2的焦点F作斜率为k的直线l,与C2交于A、B两点,若l与C1交于C、D两点,若$\frac{|AB|}{|CD|}=\frac{5}{3}$,求直线l的方程
x3-24$\sqrt{3}$
y$-2\sqrt{3}$0-4$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在明朝程大位《算法统宗》中,有这样的一首歌谣,叫做浮屠增级歌:“远看巍巍塔七层,红光点点倍加增.共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔,其古称浮屠,本题说它一共有七层宝塔,每层悬挂的红灯数是上一层的2倍,则这个塔顶有(  )盏灯.
A.1B.2C.3D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ax3+bx,且函数y=f(x)-$\frac{3}{2}$x2在x=1和x=2处取得极值
(1)求a,b的值
(2)设g(x)=x(lnx-1),若对任意x1∈R,存在x2∈(0,+∞),使f′(x1)-g′(x2)=1,则x22-x12是否存在最小值?若存在,求出最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列命题中正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.“若xy=0,则x=0或y=0”的逆否命题为“若x≠0或y≠0,则xy≠0”
C.在△ABC中,A>B是cosA<cosB的必要不充分条件
D.若p∧(¬q)为假,p∨(¬q)为真,则p,q同真或同假

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数$f(x)=\frac{{\sqrt{{{log}_{\frac{1}{2}}}({4x-3})}}}{x-1}$的定义域为($\frac{3}{4}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知命题p:?x∈R,x2+3x=4,则¬p是?x∈R,x2+3x≠4.

查看答案和解析>>

同步练习册答案