精英家教网 > 高中数学 > 题目详情
10.函数y=|tan x|的周期为(  )
A.$\frac{π}{2}$B.ΠC.D.

分析 根据正切函数的图象与性质,结合绝对值的意义即可得出结论.

解答 解:根据正切函数的图象与性质,
函数y=|tanx|的周期为π.
故选:B.

点评 本题考查了正切函数的图象与性质的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若直线2ax-by+4=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则ab的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{ln(-x),x<0}\\{\frac{x}{{e}^{x-1}}.x≥0}\end{array}\right.$,若方程[f(x)]2+mf(x)-m(m+1)=0有四个不等的实数根,则m的取值范围是(  )
A.-1≤m<$\frac{4}{5}$B.m≤-1或m>1C.m=-1或m>1D.m=-1或0<m<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.空间中两点A(3,-2,5),B(6,0,-1)之间的距离为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.记函数f(x)=-2m+2msin(x+$\frac{3π}{2}$)-2cos2(x-$\frac{π}{2}$)+1,x∈[-$\frac{π}{2}$,0]的最小值为h(m).
(1)求h(m);
(2)若h(m)=$\frac{1}{2}$,求m及此时f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|2x-a|+a,a∈R,g(x)=|2x-1|
(1)当a=2时,求满足f(x)≥g(2)的x的值.
(2)当x∈R时,恒有f(x)+g(x)≥3,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$cos(\frac{π}{6}+x)=\frac{1}{3}$,则$cos(\frac{5π}{6}-x)$的值为(  )
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$-\frac{{2\sqrt{2}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下面四个推理不是合情推理的是(  )
A.由圆的性质类比推出球的有关性质
B.由直角三角形、等腰三角形、等边三角形的内角和都是180°,归纳出所有三角形的内角和都是180°
C.某次考试张军的成绩是100分,由此推出全班同学的成绩都是100分
D.蛇、海龟、蜥蜴是用肺呼吸的,蛇、海龟、蜥蜴是爬行动物,所以所有的爬行动物都是用肺呼吸的

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法正确的是(  )
A.“sinα=$\frac{3}{5}$”是“cos2α=$\frac{7}{25}$”的必要不充分条件
B.命题“若xy=0,则x=0或y=0”的否命题是“若xy≠0,则x≠0或y≠0”
C.已知命题p:?x∈R,使2x>3x;命题q:?x∈(0,+∞),都有$\frac{1}{{x}^{2}}$<$\frac{1}{{x}^{3}}$,则p∧(¬q)是真命题
D.从匀速传递的生产流水线上,质检员每隔5分钟从中抽取一件产品进行某项指标检测,这是分层抽样

查看答案和解析>>

同步练习册答案