精英家教网 > 高中数学 > 题目详情
4.已知α为第四象限的角,则tan$\frac{α}{2}$(  )
A.一定是正数B.一定是负数
C.正数、负数都有可能D.有可能是零

分析 由2kπ-$\frac{π}{2}$<α<2kπ,k∈Z,求得kπ-$\frac{π}{4}$<$\frac{α}{2}$<kπ,故$\frac{α}{2}$为第二或第四象限角,由此可得tan$\frac{α}{2}$的符号.

解答 解:∵已知α为第四象限的角,即2kπ-$\frac{π}{2}$<α<2kπ,k∈Z,∴kπ-$\frac{π}{4}$<$\frac{α}{2}$<kπ,故 $\frac{α}{2}$为第二或第四象限角,
则tan$\frac{α}{2}$一定小于零,
故选:B.

点评 本题主要考查象限角的表示方法,正切函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知sin53.13°=0.8,求cos143.13°和cos216.87°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,已知在四棱锥P-ABCD中,CD∥AB,AD⊥AB,BC⊥PC,且AD=DC=PA=$\frac{1}{2}$AB=1
(1)求证:BC⊥平面PAC;
(2)试在线段PB上找一点M,使CM∥平面PAD,并说明理由;
(3)若点M是由(2)中确定的,且PA⊥AB,求四面体MPAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=x2对于任意的x,y∈R都有(  )
A.f(x+y)=f(x)f(y)B.f(xy)=f(x)+f(y)C.f(xy)=f(x)f(y)D.f(x+y)=f(x)+f(y)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,直线PD⊥平面ABCD,ABCD为正方形,PD=AD,求直线PA与BD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)设a,b,c为正数,且a+2b+3c=13,则$\sqrt{3a}$+$\sqrt{2b}$+$\sqrt{c}$的最大值为$\frac{13\sqrt{3}}{3}$;
(2)设正实数a,b,c满足abc≥1,求$\frac{{a}^{2}}{a+2b}$+$\frac{{b}^{2}}{b+2c}$+$\frac{{c}^{2}}{c+2a}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知i虚数单位,则($\frac{1+2i}{1-i}$)2-($\frac{2-i}{1+i}$)2=(  )
A.-3+4iB.0C.-4+3iD.-4-3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a为正实数,则“a≥1”是“$a+\frac{1}{a}≥2$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.椭圆2x2+y2=8的长轴长是(  )
A.2B.$2\sqrt{2}$C.4D.$4\sqrt{2}$

查看答案和解析>>

同步练习册答案