精英家教网 > 高中数学 > 题目详情
6.平行线2x-7y+8=0和2x-7y-6=0的距离为$\frac{14\sqrt{51}}{51}$.

分析 直接利用平行线之间的距离公式求解即可.

解答 解:平行线2x-7y+8=0和2x-7y-6=0的距离为:d=$\frac{|8+6|}{\sqrt{{2}^{2}+{7}^{2}}}$=$\frac{14\sqrt{51}}{51}$.
故答案为:$\frac{14\sqrt{51}}{51}$.

点评 本题考查平行线之间距离公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下列函数中,在(0,2)上为增函数的是(  )
A.$y={log_{\frac{1}{2}}}(x+1)$B.$y={log_2}\sqrt{{x^2}-1}$C.$y={log_2}\frac{1}{x}$D.$y={log_{0.2}}(4-{x^2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.$a=-\frac{1}{2}$是函数f(x)=ln(ex+1)+ax为偶函数的充要条条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设等差数列{an}、{bn}的前n项和分别为Sn,Tn,若对于任意的正整数n都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-3}{4n-3}$,则$\frac{{a}_{9}}{{b}_{5}+{b}_{7}}$+$\frac{{a}_{3}}{{b}_{4}+{b}_{8}}$=(  )
A.$\frac{19}{41}$B.$\frac{9}{7}$C.$\frac{3}{7}$D.$\frac{40}{59}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,已知空间四边形OABC各边及对角线长都相等,E,F分别为AB,OC的中点,求0E与BF所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={1,2,3,4},B={y|y=2x,x∈A},则A∩B=(  )
A.{1,2,3,4}B.{1,2}C.{2,3}D.{2,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知集合A={x|a≤x≤a+3},B={x|x≤-1或x≥3},
(1)若A∩B=∅,求实数a的范围;
(2)若A⊆B,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线y2=2px(p>0)上有两个动点A,B及一个定点M(x0,y0),F是抛物线的焦点,且|AF|,|MF|,|BF|成等差数列.求证:线段AB的垂直平分线经过定点Q(x0+p,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知z=$\frac{{{(\sqrt{3}+i)}^{2}(4+3i)}^{3}}{{(\sqrt{2}+i)}^{2}}$,求|z|.

查看答案和解析>>

同步练习册答案