精英家教网 > 高中数学 > 题目详情

【题目】设函数.

(1)若函数是奇函数,求实数的值;

(2)若对任意的实数,函数为实常数)的图象与函数的图象总相切于一个定点.

① 求的值;

② 对上的任意实数,都有,求实数的取值范围.

【答案】(1)0;(2)①;②

【解析】试题分析:

(1)由奇函数的 定义得到关于实数a的方程,解方程可得a=0;

(2)由导函数研究函数的 切线可得切点为,切线的方程为,则.

(3)由题意分类讨论 两种情况可得实数的取值范围是

试题解析:

解:(1)因为函数是奇函数,所以恒成立,

,得恒成立,

.

(2)①,设切点为

则切线的斜率为

据题意是与无关的常数,故,切点为, 由点斜式得切线的方程为,即,故.

② 当时,对任意的,都有;

时,对任意的,都有;

恒成立,或恒成立.

,设函数.

恒成立,或恒成立,

时, ,,恒成立,所以上递增, ,

上恒成立,符合题意. 时,令,得,令,得,

上递减,所以

设函数

恒成立,

上递增, 恒成立,

上递增, 恒成立,

,而,不合题意.

综上,知实数的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】斐波那契数列满足: .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论错误的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】矩形纸片ABCD中,AB10cm,BC8cm.将其按图(1)的方法分割,并按图(2)的方法焊接成扇形;按图(3)的方法将宽BC 等分,把图(3)中的每个小矩形按图(1)分割并把4个小扇形焊接成一个大扇形;按图(4)的方法将宽BC 等分,把图(4)中的每个小矩形按图(1)分割并把6个小扇形焊接成一个大扇形;……;依次将宽BC 等分,每个小矩形按图(1)分割并把个小扇形焊接成一个大扇形.当n时,最后拼成的大扇形的圆心角的大小为 ( )

A. 小于 B. 等于 C. 大于 D. 大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面底面平分的中点,分别为上一点,且.

(1)若,证明:平面.

(2)过点作平面的垂线,垂足为,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记函数f(x)=log2(2x﹣3)的定义域为集合M,函数g(x)=的定义域为集合N.求:
(Ⅰ)集合M,N;
(Ⅱ)集合M∩N,R(M∪N).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的右顶点为,左、右焦点分别为,过点

且斜率为的直线与轴交于点, 与椭圆交于另一个点,且点轴上的射影恰好为点

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点且斜率大于的直线与椭圆交于两点(),若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的右顶点为,左、右焦点分别为,过点

且斜率为的直线与轴交于点, 与椭圆交于另一个点,且点轴上的射影恰好为点

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点且斜率大于的直线与椭圆交于两点(),若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一长为24米的篱笆,一面利用墙(墙最大长度是10米)围成一个矩形花圃,设该花圃宽AB为x米,面积是y平方米,

(1)求出y关于x的函数解析式,并指出x的取值范围;

(2)当花圃一边AB为多少米时,花圃面积最大?并求出这个最大面积?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点, 轴的正半轴与极轴建立极坐标系,已知曲线的极坐标方程为,过点且倾斜角为的直线与曲线相交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若,求的值.

查看答案和解析>>

同步练习册答案