精英家教网 > 高中数学 > 题目详情
20.P为抛物线y2=2px的焦点弦AB的中点,A,B,P三点到抛物线准线的距离分别是|AA1|,|BB1|,|PP1|,则有(  )
A.|PP1|=|AA1|+|BB1|B.|PP1|=$\frac{1}{2}$|AB|C.|PP1|>$\frac{1}{2}$|AB|D.|PP1|$<\frac{1}{2}$|AB|

分析 根据梯形的中位线定理,可得|AA1|+|BB1|=2|PP1|,结合抛物线的性质|AA1|+|BB1|=|AB|,可得答案.

解答 解:∵P为抛物线y2=2px的焦点弦AB的中点,
故A,B,P三点到抛物线准线的距离满足:
|AA1|+|BB1|=|AB|=2|PP1|,
即|PP1|=$\frac{1}{2}$|AB|,
故选:B.

点评 本题考查的知识点是抛物线的简单性质,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知点A(2,4)在抛物线y2=2px上,且抛物线的准线过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点,若双曲线的离心率为2,则该双曲线的方程为${x}^{2}-\frac{{y}^{2}}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,∠AOP=$\frac{π}{3}$,Q点与P点关于y轴对称,P,Q都为角的终边与单位圆的交点,求:
(1)P点坐标;
(2)∠AOQ的正弦函数值、余弦函数值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若直线l1:y=kx-2和直线l2:2x+y=4的交点在第一象限,则直线l1的倾斜角的范围是(  )
A.($\frac{π}{6}$,$\frac{π}{4}$)B.($\frac{π}{4}$,$\frac{π}{2}$)C.($\frac{π}{4}$,$\frac{π}{2}$]D.($\frac{π}{4}$,$\frac{π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.圆C的半径为$\sqrt{13}$,且与直线2x+3y-10=0切于点P(2,2).
(1)求圆C的方程;
(2)若原点不在圆C的内部,且圆x2+y2=m与圆C相交,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知sinα,tanθ是方程5x2-7x-6=0的两根,若3π<α<$\frac{7π}{2}$,求$\frac{sin(5π-α)cos(2π-α)cos(\frac{3π}{2}-α)-si{n}^{2}α}{cos(\frac{π}{2}-α)sin(-π-α)}$的值,求$\frac{2si{n}^{2}θ-3co{s}^{2}θ}{si{n}^{2}θ+2co{s}^{2}θ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.己知椭圆方程C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),经过点(1,$\frac{\sqrt{2}}{2}$),且两焦点与短轴的一个端点构成等腰直角三角形.
(1)求椭圆方程;
(2)过椭圆右顶点的两条斜率乘积为-$\frac{1}{2}$的直线分别交椭圆于M,N两点,试问:直线MN是否过定点?若过定点,请求出此定点,若不过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,左右焦点分别是F1,F2,以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.
 (I)求椭圆C的方程;
(II)设椭圆E:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{4{b}^{2}}$=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点.射线PO交椭圆E于点Q.
(i)求$\frac{|OQ|}{|OP|}$的值,(ii)求△ABQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在等比数列{an}中,an=8an-3(n≥4,且n∈N*).且4a1,${{a}_{2}}^{2}$,a3成等差数列
(1)求数列{an}的通项公式;
(2)令b1=1,bn=$\frac{{a}_{n-1}}{2}$(n≥2,且n∈N*),求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案