精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的直三棱柱中,分别是的中点.

)求证:平面

)若为正三角形上的一点求直线与直线所成角的正切值.

【答案】)见解析(

【解析】

试题分析:)取中点,连接.,推导出,从而平面.

;再推导出平面,进而平面平面.由此能证明平面.推导出平面平面.平面中点连接可得,故平面,又,可得,所以即为直线与直线所成角.,由此能求出直线与平面所成角的正切值.

试题解析:)取中点,连接.

中,因为分别为的中点,所以,平面平面,所以平面.

在矩形中,因为,分别为,的中点,

所以平面平面,所以平面.

因为,所以平面平面.

因为平面,故 平面

因为三棱柱为直三棱柱所以平面平面.

连接因为为正三角形中点,所以,所以平面

中点连接可得,故平面

又因为,所以,

所以即为直线与直线所成角.

,.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知曲线,以平面直角坐标系的原点为极点,轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线

(1)将曲线上的所有点的横坐标、纵坐标分别伸长为原来的倍后得到曲线.试写出直线的直角坐标方程和曲线的参数方程:

(2)在曲线上求一点,使点到直线的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣﹣(a+2)lnx,其中实数a≥0.

(1)若a=0,求函数f(x)在x∈[1,3]上的最值;

(2)若a>0,讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

)证明:

)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三次函数

(1)若函数过点且在点处的切线方程是,求函数的解析式;

(2)在(1)的条件下,若对于区间上任意两个自变量的值

都有,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(

(1)若,求曲线处的切线方程.

(2)对任意,总存在,使得(其中的导数)成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的方程22x+2xa+a+1=0有实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的方程22x+2xa+a+1=0有实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市统计局就2015年毕业大学生的月收入情况调查了10000人,并根据所得数据画出样本的频率分布直方图所示,每个分组包括左端点,不包括右端点,如第一组表示.

(1)求毕业大学生月收入在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析大学生的收入与所学专业、性别等方面的关系,必须按月收入再从这10000人中按分层抽样方法抽出100人作进一步分析,则月收入在的这段应抽取多少人?

查看答案和解析>>

同步练习册答案