A. | (-∞,$\frac{3}{2}$+$\sqrt{2}$] | B. | (-∞,3] | C. | (-∞,6] | D. | (-∞,3+2$\sqrt{2}$] |
分析 利用“乘1法”与基本不等式的性质可得a+b的最小值,即可得出.
解答 解:∵a,b为正实数,且$\frac{1}{a}$+$\frac{2}{b}$=2,
∴a+b=$\frac{1}{2}(\frac{1}{a}+\frac{2}{b})$(a+b)=$\frac{1}{2}$$(3+\frac{2a}{b}+\frac{b}{a})$≥$\frac{1}{2}(3+2\sqrt{\frac{2a}{b}•\frac{b}{a}})$=$\frac{3+2\sqrt{2}}{2}$,当且仅当b=$\sqrt{2}$a=$\frac{2+\sqrt{2}}{2}$时取等号.
∵a+b≥c对满足条件的a,b恒成立,
则c≤$\frac{3}{2}$+$\sqrt{2}$.
故选:A.
点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | ($\frac{1}{2}$,+∞) | B. | (-∞,$\frac{1}{2}$) | C. | (-2,3) | D. | (-∞,-2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{x^2}{9}-\frac{y^2}{16}=1$ | B. | $\frac{x^2}{18}-\frac{y^2}{32}=1$ | C. | $\frac{x^2}{9}-\frac{y^2}{25}=1$ | D. | $\frac{x^2}{36}-\frac{y^2}{64}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{2}tan{25°}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{1}{2}$+$\frac{1}{3}$ | C. | $\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$ | D. | $\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+$\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com