【题目】在直角坐标系xOy中,曲线C1的参数方程为(为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2:ρ2﹣4ρcosθ+3=0.
(1)求曲线C1的一般方程和曲线C2的直角坐标方程;
(2)若点P在曲线C1上,点Q曲线C2上,求|PQ|的最小值.
【答案】(1),(x﹣2)2+y2=1;(2)2.
【解析】
(1)由C1的参数方程为为参数),消去参数即可转换为直角坐标方程,根据曲线C2:ρ2﹣4ρcosθ+3=0.利用转换为直角坐标方程.
(2)设点P(5cosθ,4sinθ),根据点Q在圆上,先求点P到圆心的距离,然后减去半径即为最小值.
(1)曲线C1的参数方程为为参数),
两式平方相加整理得.
将代入ρ2﹣4ρcosθ+3=0.
得x2+y2﹣4x+3=0,
整理得(x﹣2)2+y2=1.
(2)设点P(5cosθ,4sinθ)在曲线C1上,圆心O(2,0),
所以:,
当cosθ=1时,|PO|min=3,
所以|PQ|的最小值3﹣1=2.
科目:高中数学 来源: 题型:
【题目】设椭圆的离心率为,且经过点.
(1)求椭圆的标准方程;
(2)设直线与椭圆交两点,是坐标原点,分别过点作,的平行线,两平行线的交点刚好在椭圆上,判断是否为定值?若为定值,求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据气象部门预报,在距离某个码头A南偏东45°方向的600km处的热带风暴中心B正以30km/h的速度向正北方向移动,距离风暴中心450km以内的地区都将受到影响,从现在起经过___小时后该码头A将受到热带风暴的影响(精确到0.01).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.某市场研究人员为了了解共享单车运营公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,并绘制了相应的折线图.
(Ⅰ)由折线图得,可用线性回归模型拟合月度市场占有率与月份代码之间的关系.求关于的线性回归方程,并预测公司2017年5月份(即时)的市场占有率;
(Ⅱ)为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为1000元/辆和1200元/辆的两款车型可供选择,按规定每辆单车最多使用4年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不形同,考虑到公司运营的经济效益,该公司决定先对两款车型的单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表见上表.
经测算,平均每辆单车每年可以带来收入500元,不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整年,且以频率作为每辆单车使用寿命的概率,如果你是公司的负责人,以每辆单车产生利润的期望值为决策依据,你会选择采购哪款车型?
(参考公式:回归直线方程为,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】计算机诞生于20世纪中叶,是人类最伟大的技术发明之一.计算机利用二进制存储信息,其中最基本单位是“位(bit)”,1位只能存放2种不同的信息:0或1,分别通过电路的断或通来实现.“字节(Byte)”是更大的存储单位,1Byte=8bit,因此1字节可存放从00000000(2)至11111111(2)共256种不同的信息.将这256个二进制数中,恰有相邻三位数是1,其余各位数均是0的所有数相加,则计算结果用十进制表示为( )
A.378B.441C.742D.889
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列,,满足:,,.
(1)若数列是等差数列,求证:数列是等差数列;
(2)若数列,都是等差数列,求证:数列从第二项起为等差数列;
(3)若数列是等差数列,试判断当时,数列是否成等差数列?证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com