【题目】如图,四边形与均为菱形,设与相交于点,若,且.
(1)求证:平面;
(2)求直线与平面所成角的余弦值.
科目:高中数学 来源: 题型:
【题目】“公平正义”是社会主义和谐社会的重要特征,是社会主义法治理念的价值追求.“考试”作为一种公平公正选拔人才的有效途径,正被广泛采用.每次考试过后,考生最关心的问题是:自己的考试名次是多少?自已能否被录取?能获得什么样的职位? 某单位准备通过考试(按照高分优先录取的原则)录用名,其中个高薪职位和个普薪职位.实际报名人数为名,考试满分为分.(一般地,对于一次成功的考试来说,考试成绩应服从正态分布. )考试后考试成绩的部分统计结果如下:
考试平均成绩是分,分及其以上的高分考生名.
(1)最低录取分数是多少?(结果保留为整数)
(2)考生甲的成绩为分,若甲被录取,能否获得高薪职位?若不能被录取,请说明理由.
参考资料:(1)当时,令,则.
(2)当时,,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,等腰梯形中,,,,为中点,与交于点,将沿折起,使点到达点的位置(平面).
(1)证明:平面平面;
(2)若,试判断线段上是否存在一点(不含端点),使得直线与平面所成角的正弦值为,若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记矩阵中的第行第列上的元素为,现对矩阵中的元素按如下算法所示的步骤作变动(直到不能变动为止):若,则,,,若,则不变动,这样得到矩阵B,再对矩阵B中的元素按如下算法所示的步骤作变动(直到不能变动为止):若,则,,;若,则不变动,这样得到矩阵,则________;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,并在两种坐标系中取相同的长度单位已知直线l的参数方程为(为参数,),抛物线C的普通方程为.
(1)求抛物线C的准线的极坐标方程;
(2)设直线l与抛物线C相交于A,B两点,求的最小值及此时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据阅兵领导小组办公室介绍,2019年国庆70周年阅兵有59个方(梯)队和联合军乐团,总规模约1.5万人,是近几次阅兵中规模最大的一次.其中,徒步方队15个.为了保证阅兵式时队列保持整齐,各个方队对受阅队员的身高也有着非常严格的限制,太高或太矮都不行.徒步方队队员,男性身高普遍在175cm至185cm之间;女性身高普遍在163cm至175cm之间,这是常规标准.要求最为严格的三军仪仗队,其队员的身高一般都在184cm至190cm之间.经过随机调查某个阅兵阵营中女子100人,得到她们身高的直方图,如图,记C为事件:“某一阅兵女子身高不低于169cm”,根据直方图得到P(C)的估计值为0.5.
(1)求直方图中a,b的值;
(2)估计这个阵营女子身高的平均值 (同一组中的数据用该组区间的中点值为代表)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.
购买金额(元) | ||||||
人数 | 10 | 15 | 20 | 15 | 20 | 10 |
(1)求购买金额不少于45元的频率;
(2)根据以上数据完成列联表,并判断是否有的把握认为购买金额是否少于60元与性别有关.
不少于60元 | 少于60元 | 合计 | |
男 | 40 | ||
女 | 18 | ||
合计 |
附:参考公式和数据:,.
附表:
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | |
0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,将曲线(为参数)上任意一点经过伸缩变换后得到曲线的图形.以坐标原点为极点,x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,已知直线.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)点P为曲线上的任意一点,求点P到直线的距离的最大值及取得最大值时点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com