精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形均为菱形,设相交于点,若,且.

1)求证:平面

2)求直线与平面所成角的余弦值.

【答案】(1)证明见解析 (2)

【解析】

1)证明平面平面,即证平面;(2)连接,由两两垂直,建立如图所示的空间直角坐标系.利用向量法求直线与平面所成角的余弦值.

1)∵四边形与四边形均为菱形,

.

平面平面平面平面

平面平面

平面平面

∴平面平面

平面

平面.

2)连接,∵四边形为菱形,且

为等边三角形,

中点,∴

又∵中点,且,∴

,∴平面.

两两垂直,建立如图所示的空间直角坐标系.

,因为四边形为菱形,

设平面的一个法向量

,取,得

设直线与平面所成角为

∴直线与平面所成角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】公平正义是社会主义和谐社会的重要特征,是社会主义法治理念的价值追求.“考试作为一种公平公正选拔人才的有效途径,正被广泛采用.每次考试过后,考生最关心的问题是:自己的考试名次是多少?自已能否被录取?能获得什么样的职位? 某单位准备通过考试(按照高分优先录取的原则)录用名,其中个高薪职位和个普薪职位.实际报名人数为名,考试满分为.(一般地,对于一次成功的考试来说,考试成绩应服从正态分布. )考试后考试成绩的部分统计结果如下:

考试平均成绩是分,分及其以上的高分考生.

(1)最低录取分数是多少?(结果保留为整数)

(2)考生甲的成绩为分,若甲被录取,能否获得高薪职位?若不能被录取,请说明理由.

参考资料:(1)时,令,则.

(2)时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,等腰梯形中,中点,交于点,将沿折起,使点到达点的位置(平面).

1)证明:平面平面

2)若,试判断线段上是否存在一点(不含端点),使得直线与平面所成角的正弦值为,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记矩阵中的第行第列上的元素为,现对矩阵中的元素按如下算法所示的步骤作变动(直到不能变动为止):若,则,若,则不变动,这样得到矩阵B,再对矩阵B中的元素按如下算法所示的步骤作变动(直到不能变动为止):若,则;若,则不变动,这样得到矩阵,则________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点,x轴的非负半轴为极轴建立极坐标系,并在两种坐标系中取相同的长度单位已知直线l的参数方程为(为参数,),抛物线C的普通方程为.

(1)求抛物线C的准线的极坐标方程;

(2)设直线l与抛物线C相交于AB两点,求的最小值及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据阅兵领导小组办公室介绍,2019年国庆70周年阅兵有59个方()队和联合军乐团,总规模约15万人,是近几次阅兵中规模最大的一次.其中,徒步方队15个.为了保证阅兵式时队列保持整齐,各个方队对受阅队员的身高也有着非常严格的限制,太高或太矮都不行.徒步方队队员,男性身高普遍在175cm185cm之间;女性身高普遍在163cm175cm之间,这是常规标准.要求最为严格的三军仪仗队,其队员的身高一般都在184cm190cm之间.经过随机调查某个阅兵阵营中女子100人,得到她们身高的直方图,如图,记C为事件:某一阅兵女子身高不低于169cm,根据直方图得到P(C)的估计值为05

(1)求直方图中ab的值;

(2)估计这个阵营女子身高的平均值 (同一组中的数据用该组区间的中点值为代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

求函数的单调区间;

如果对于任意的总成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.

购买金额(元)

人数

10

15

20

15

20

10

1)求购买金额不少于45元的频率;

2)根据以上数据完成列联表,并判断是否有的把握认为购买金额是否少于60元与性别有关.

不少于60元

少于60元

合计

40

18

合计

附:参考公式和数据:.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,将曲线为参数)上任意一点经过伸缩变换后得到曲线的图形.以坐标原点为极点,x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,已知直线

1)求曲线的普通方程和直线的直角坐标方程;

2)点P为曲线上的任意一点,求点P到直线的距离的最大值及取得最大值时点P的坐标.

查看答案和解析>>

同步练习册答案