精英家教网 > 高中数学 > 题目详情
10.函数f(x)=x2+mx+1的图象关于直线x=1对称,则(  )
A.m=-2B.m=2C.m=-1D.m=1

分析 直接利用二次函数的性质,求解即可.

解答 解:函数f(x)=x2+mx+1的图象关于直线x=1对称,
可得:-$\frac{m}{2}$=1,解得m=-2.
故选:A.

点评 本题考查二次函数的简单性质应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知数列{an}的通项公式为an=2n($\frac{2}{3}$)n,若an<λ恒成立,则λ的取值范围是($\frac{16}{9}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|2x-1>0},B={x|0<x<1},那么A∩B=(  )
A.$\{x|0<x<\frac{1}{2}\}$B.$\{x|\frac{1}{2}<x<1\}$C.{x|0<x<1}D.$\{x|x>\frac{1}{2}\}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知过球面上三点A、B、C的截面到球心距离等于球半径的一半,且AC=BC=6,AB=4,则球面面积为(  )
A.42πB.48πC.54πD.60π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,四面体ABCD中,O、E分别BD、BC的中点,CA=CB=CD=BD=2AO=2,AB=AD.
(Ⅰ)求证:AO⊥平面BCD;
(Ⅱ)求异面直线AB与CD所成角的余弦值;
(Ⅲ)求点E到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)=lg$\frac{2+x}{2-x}$,则f(5x-3)的定义域为(  )
A.(-$\frac{74}{25},22$)B.(-$\frac{74}{25},25$)C.(-2,2)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,正方形ADEF所在平面和等腰梯形ABCD所在的平面互相垂直,已知BC=4,AB=AD=2.
(1)求证:AC⊥BF;
(2)在线段BE上是否存在一点P,使得平面PAC⊥平面BCEF?若存在,求出$\frac{|BP|}{|PE|}$的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.两平行直线2x-y+3=0和2x-y-1=0之间的距离是$\frac{{4\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤1)}\\{lo{g}_{3}x(x>1)}\end{array}\right.$,若f[f($\frac{1}{a}$)]=2,则a=3-1或3-9

查看答案和解析>>

同步练习册答案