精英家教网 > 高中数学 > 题目详情

【题目】表示大于的整数的十位数,例如.已知都是大于的互不相等的整数,现有如下个命题:

①若,则;②

③若是质数,则也是质数;④若成等差数列,则可能成等比数列.

其中所有的真命题为( )

A. B. ③④ C. ①②④ D. ①②③④

【答案】C

【解析】分析首先将题中的新定义的内容看完理透弄明白,之后再将各个命题一一对照,逐个分析,判断正误,得到答案.

详解对于①,根据题意可知的十位数是9,的十位数是3,所以有若,则成立,故①是真命题;

对于②,令则有 所以成立,故②是真命题;

对于③,是质数,而 既不是质数,也不是合数,所以其不正确,故③是假命题;

对于④,令满足三数成等差数列,此时都是1,故其为公比为1的等比数列,所以成立,故④为真命题;

故所有的真命题为①②④,故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我校高二年级共2000名学生,其中男生1200人.为调查学生们的手机使用情况,采用分层抽样的方法,随机抽取100位学生每周平均使用手机上网时间的样本数据(单位:小时).根据这100个数据,得到学生每周平均使用手机上网时间的频率分布直方图(如图所示),其中样本数据分组区间分别为.

(1)应收集男生、女生样本数据各多少人?

(2)估计我校高二年级学生每周平均使用手机上网时间超过4小时的概率.

(3)将平均每周使用手机上网时间在内定义为“长时间使用手机”,在内定义为“短时间使用手机”.在样本数据中,有25名学生不近视.请完成下列2×2列联表,并判断是否有99.5%的把握认为“学生每周使用手机上网时间与近视程度有关”.

近视

不近视

合计

长时间使用手机上网

短时间使用手机上网

15

合计

25

附:

0.100

0.050

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.某共享单车运营公司为进一步扩大市场,公司拟再采购一批单车.现有采购成本分别为元/辆和元/辆的两款车型可供选择,按规定每辆单车最多使用年,但由于多种原因(如骑行频率等)会导致车辆报废年限各不相同.考虑到公司运营的经济效益,该公司决定先对两款车型的单车各辆进行科学模拟测试,得到两款单车使用寿命频数表见下表.

经测算,平均每辆单车每年可以带来收入元.不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整年.

(1)分别估计两款车型使用寿命不低于年的概率;

(2)如果你是公司的负责人,以参加科学模拟测试的两款车型各辆单车产生利润的平均数为决策依据,你会选择采购哪款车型?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是函数)图象上的任意两点,且角的终边经过点,若时,的最小值为

1)求函数的解析式;

2)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系中,曲线的方程是,直线经过点,倾斜角为,以为极点,轴的正半轴为极轴建立极坐标系.

(1)写出曲线的极坐标方程和直线的参数方程;

(2)设直线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4m和am(0<a<12),不考虑树的粗细.现用16m长的篱笆,借助墙角围成一个矩形花圃ABCD.设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位m2)的图象大致是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016~2017·郑州高一检测)过点M(1,2)的直线l与圆C:(x-3)2+(y-4)2=25交于AB两点,C为圆心,当∠ACB最小时,直线l的方程是 (  )

A. x-2y+3=0 B. 2xy-4=0

C. xy+1=0 D. xy-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ )的周期为π,且图象上的一个最低点为M( ).

(1)求f(x)的解析式及单调递增区间;

(2)当x∈[0,]时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.

查看答案和解析>>

同步练习册答案