精英家教网 > 高中数学 > 题目详情

在△ABC中,若A=120°,AB=5,BC=7,则△ABC的面积S=________.


分析:用余弦定理求出边AC的值,再用面积公式求面积即可.
解答:据题设条件由余弦定理得|BC|2=|AB|2+|AC|2-2|AB||AC|cosA
即49=25+|AC|2-2×5×|AC|×(-),
即AC|2+5×|AC|-24=0解得|AC|=3
故△ABC的面积S=×5×3×sin1200=
故应填
点评:考查用余弦定理建立方程求值及用三角形的面积公式求三角形的面积,训练公式的熟练使用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出命题:
①函数y=2sinx-cosx的值域是[-2,1];
②函数y=sinπxcosπx是周期为2的奇函数;
x=-
3
4
π
是函数y=sin(x+
π
4
)
的一条对称轴;
④若sin2α<0,cosα-sinα<0,则α一定为第二象限角;
⑤在△ABC中,若A>B则sinA>sinB.
其中正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若a=7,b=3,c=8,则其面积等于(  )
A、12
B、
21
2
C、28
D、6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若∠A=60°,∠B=45°,BC=
2
,则AC=
2
3
3
2
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,真命题的个数为(  )
(1)在△ABC中,若A>B,则sinA>sinB;
(2)已知
AB
=(3,4),
CD
=(-2,-1)
,则
AB
CD
上的投影为-2;
(3)已知p:?x∈R,cosx=1,q:?x∈R,x2-x+1>0,则“p∧¬q”为假命题;
(4)已知函数f(x)=sin(ωx+
π
6
)-2
(ω>0)的导函数的最大值为3,则函数f(x)的图象关于x=
π
3
对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α为锐角,且tanα=
2
-1
,函数f(x)=2xtan2α+sin(2α+
π
4
)
,数列{an}的首项a1=1,an+1=f(an).
(1)求函数f(x)的表达式;
(2)在△ABC中,若∠A=2α,∠C=
π
3
,BC=2,求△ABC的面积
(3)求数列{an}的前n项和Sn

查看答案和解析>>

同步练习册答案