【题目】在△ABC中,sinB+ sin =1﹣cosB.
(1)求角B的大小;
(2)求sinA+cosC的取值范围.
【答案】
(1)解:由sinB+ sin =1﹣cosB.
可得:2sin cos + sin =1﹣(1﹣2 )
2cos + =2sin
=2 sin( )
sin( )= ,
∵0<B<π,
∴0< <π,
∴ < < ,
∴sin( )=sin
∴B= ;
(2)解:由(1)可得B= ,
∴A+C= ,
那么:sinA+cosC=sinA+cos( ﹣A)= sinA cosA= sin(A+ ),
∵0<A< ,
∴ <A+ < ,
sin(A+ )∈( , ),
∴sinA+cosC的取值范围是( , ).
【解析】1、由正余弦的二倍角公式可得原式化为sin( )= ,根据角的取值范围可得 sin( )=sin 既得结果。
2、根据(1)的结论由三角形的内角和可得A+C= ,把要求的式子整理化简得sinA+cosC= 3 sin(A+ ),再根据角的取值范围可得 <A+ < ,故得sinA+cosC的取值范围。
【考点精析】认真审题,首先需要了解正弦定理的定义(正弦定理:).
科目:高中数学 来源: 题型:
【题目】200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方式,按1~200编号分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为23,第9组抽取号码为;若采用分层抽样,40﹣50岁年龄段应抽取人.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的首项a1=1,且an+1=2an+1(n∈N*)
(Ⅰ)证明数列{an+1}是等比数列,并求数列{an}的通项公式;
(Ⅱ)设bn= ,求数列{bn}的前n项和Sn;
(Ⅲ)在条件(Ⅱ)下对任意正整数n,不等式Sn+ ﹣1>(﹣1)na恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数y=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示,则( )
A.f(x)的一个对称中心为
B.f(x)的图象关于直线 对称
C.f(x)在 上是增函数
D.f(x)的周期为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线 ﹣ =1(a>0,b>0)的左、右焦点分别为F1、F2 , 过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为( )
A.
B.
C.2
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com