精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,sinB+ sin =1﹣cosB.
(1)求角B的大小;
(2)求sinA+cosC的取值范围.

【答案】
(1)解:由sinB+ sin =1﹣cosB.

可得:2sin cos + sin =1﹣(1﹣2

2cos + =2sin

=2 sin(

sin( )=

∵0<B<π,

∴0< <π,

∴sin( )=sin

∴B=


(2)解:由(1)可得B=

∴A+C=

那么:sinA+cosC=sinA+cos( ﹣A)= sinA cosA= sin(A+ ),

∵0<A<

<A+

sin(A+ )∈( ),

∴sinA+cosC的取值范围是( ).


【解析】1、由正余弦的二倍角公式可得原式化为sin( )= ,根据角的取值范围可得 sin( )=sin 既得结果。
2、根据(1)的结论由三角形的内角和可得A+C= ,把要求的式子整理化简得sinA+cosC= 3 sin(A+ ),再根据角的取值范围可得 <A+,故得sinA+cosC的取值范围。
【考点精析】认真审题,首先需要了解正弦定理的定义(正弦定理:).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方式,按1~200编号分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为23,第9组抽取号码为;若采用分层抽样,40﹣50岁年龄段应抽取人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项a1=1,且an+1=2an+1(n∈N*
(Ⅰ)证明数列{an+1}是等比数列,并求数列{an}的通项公式;
(Ⅱ)设bn= ,求数列{bn}的前n项和Sn
(Ⅲ)在条件(Ⅱ)下对任意正整数n,不等式Sn+ ﹣1>(﹣1)na恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分图象如图所示,则( )

A.f(x)的一个对称中心为
B.f(x)的图象关于直线 对称
C.f(x)在 上是增函数
D.f(x)的周期为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量
(1)求函数f(x)的解析式,并求函数f(x)的单调增区间;
(2)画出函数f(x)在[0,2π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}满足3a8=5a15 , 且 ,Sn为其前n项和,则数列{Sn}的最大项为(
A.
B.S24
C.S25
D.S26

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的左、右焦点分别为F1、F2 , 过点F1且垂直于x轴的直线与该双曲线的左支交于A、B两点,AF2、BF2分别交y轴于P、Q两点,若△PQF2的周长为12,则ab取得最大值时该双曲线的离心率为(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,则函数f(3x﹣2)的定义域为( )
A.[ ]
B.[﹣1, ]
C.[﹣3,1]
D.[ ,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=ex+ax2 无极值点,则a的取值范围是

查看答案和解析>>

同步练习册答案