精英家教网 > 高中数学 > 题目详情

【题目】在正方体.

1)求证:

2)求异面直线所成角的大小.

【答案】1)证明见解析;(260.

【解析】

(1)根据正方体的性质,结合线面垂直的判定与性质加以证明,可得;(2)连结AD1、CD1,可证出四边形ABC1D1是平行四边形,得BC1∥AD1,得∠D1AC(或补角)就是异面直线AC与BC1所成角.等边△AD1C中求出∠D1AC=60°,即得异面直线AC与BC1所成角的大小.

(1)∵正方体ABCD-A1B1C1D1中,DD1⊥平面ABCD,AC平面ABCD,
∴AC⊥DD1
∵正方形ABCD中,AC⊥BD,DD1∩BD=D,
∴AC⊥平面BDD1
∵BD1平面BDD1,∴AC⊥BD1
(2)连结AD1、CD1
∵正方体ABCD-A1B1C1D1中,AB//C1D1
∴四边形ABC1D1是平行四边形,得BC1∥AD1
由此可得∠D1AC(或补角)就是异面直线AC与BC1所成角.
∵△AD1C是等边三角形,
∴∠D1AC=60°,即异面直线所成角的大小为60.

本试题主要是考查了线线垂直的证明,以及异面直线所成角的大小的求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】共享单车已成为一种时髦的新型环保交通工具,某共享单车公司为了拓展市场,对两个品牌的共享单车在编号分别为的五个城市的用户人数(单位:十万)进行统计,得到数据如下:

城市

品牌

1

2

3

4

5

A品牌

3

4

12

6

8

B品牌

4

3

7

9

5

(Ⅰ)若共享单车用户人数超过50万的城市称为“优城”,否则称为“非优城”,据此判断能否有85%的把握认为“优城”和共享单车品牌有关?

(Ⅱ)若不考虑其它因素,为了拓展市场,对A品牌要从这五个城市选择三个城市进行宣传,

(ⅰ)求城市2被选中的概率;

(ⅱ)求在城市2被选中的条件下城市3也被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的图像与轴无交点,求的取值范围;

(2)若方程在区间上存在实根,求的取值范围;

(3)设函数,当时若对任意的,总存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为F,过点F作垂直于x轴的直线与抛物线交于A,B两点,且以线段AB为直径的圆过点.

(1)求抛物线C的方程;

(2)设过点的直线分别与抛物线C交于点D,E和点G,H,且,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体ABCDA'B'C'D'棱长为2,并且EF分别是棱AA'CC'的中点.

(Ⅰ)求证:平面BED'F⊥平面BB'D'D

(Ⅱ)求直线A'B'与平面BED'F所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,求证:

(2)若有三个零点时,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆经过点,左、右焦点分别是点在椭圆上,且满足点只有两个.

(Ⅰ)求椭圆的方程;

(Ⅱ)过且不垂直于坐标轴的直线交椭圆两点,在轴上是否存在一点,使得的角平分线是轴?若存在求出,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某学校的特长班有50名学生,其中有体育生20名,艺术生30名,在学校组织的一次体检中,该班所有学生进行了心率测试,心率全部介于50次/分到75次/分之间,现将数据分成五组,第一组[50,55),第二组[55,60),…,第五组[70,75],按上述分组方法得到的频率分布直方图如图所示.因为学习专业的原因,体育生常年进行系统的身体锻炼,艺术生则很少进行系统的身体锻炼,若前两组的学生中体育生有8名.

(1)根据频率分布直方图及题设数据完成下列2×2列联表.

心率小于60次/分

心率不小于60次/分

合计

体育生

20

艺术生

30

合计50

(2)根据(1)中表格数据计算可知,________(填“有”或“没有”)99.5%的把握认为“心率小于60次/分与常年进行系统的身体锻炼有关”.

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市A,B两所中学的学生组队参加辩论赛,A中学推荐3名男生,2名女生,B中学推荐了3名男生,4名女生,两校推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队

1求A中学至少有1名学生入选代表队的概率.

2某场比赛前从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X得分布列和数学期望.

查看答案和解析>>

同步练习册答案