精英家教网 > 高中数学 > 题目详情
9.如图1,等腰梯形BCDP中,BC∥PD,BA⊥PD于点A,PD=3BC,且AB=BC=1.沿AB把△PAB折起到△P'AB的位置(如图2),使∠P'AD=90°.

(Ⅰ)求证:CD⊥平面P'AC;
(Ⅱ)求三棱锥A-P'BC的体积;
(Ⅲ)线段P'A上是否存在点M,使得BM∥平面P'CD.若存在,指出点M的位置并证明;若不存在,请说明理由.

分析 (Ⅰ)推导出P'A⊥AD,AB⊥AP'.从而P'A⊥面ABCD.进而P'A⊥CD,再求出AC⊥CD.由此能证明CD⊥平面P'AC.
(Ⅱ)由VA-P'BC=VP'-ABC,能求出三棱锥A-P'BC的体积.
(Ⅲ)取P'A中点M,P'D中点N,连结BM,MN,NC,推导出四边形BCNM为平行四边形,由此能求出存在一点M,M为P'A的中点,使得BM∥面P'CD.

解答 (本小题共14分)
解:(Ⅰ)因为∠P'AD=90°,所以P'A⊥AD.
因为在等腰梯形中,AB⊥AP,所以在四棱锥中,AB⊥AP'.
又AD∩AB=A,所以P'A⊥面ABCD.
因为CD?面ABCD,所以P'A⊥CD.…(3分)
因为等腰梯形BCDE中,AB⊥BC,PD=3BC,且AB=BC=1.
所以$AC=\sqrt{2}$,$CD=\sqrt{2}$,AD=2.所以AC2+CD2=AD2
所以AC⊥CD.
因为P'A∩AC=A,所以CD⊥平面P'AC. …(5分)
(Ⅱ)因为${S_{△ABC}}=\frac{1}{2}BC•AB=\frac{1}{2}$,…(7分)
P'A⊥面ABCD.
所以${V_{A-P'BC}}={V_{P'-ABC}}=\frac{1}{3}{S_{△ABC}}•P'A=\frac{1}{6}$.   …(9分)
(Ⅲ)存在一点M,M为P'A的中点,使得BM∥面P'CD,…(10分)
证明:取P'A中点M,P'D中点N,连结BM,MN,NC,
因为M,N为中点,所以MN∥$\frac{1}{2}AD$,因为BC∥$\frac{1}{2}AD$,BC=$\frac{1}{2}AD$,
所以MN∥BC,MN=BC.
所以四边形BCNM为平行四边形.…(12分)
所以BM∥CN.
因为BM?面P'CD,CN?面P'CD.
所以BM∥平面P'CD.…(14分)

点评 本题考查线面垂直的证明,考查三棱锥的体积的求法,考查满足条件的点是否存在的判断与证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=lnx,h(x)=ax(a∈R).
(1)求函数y=-af(x)-h(x)+x2+2x的单调区间:
(2)是否存在实数m,使得对任意的$x∈({\frac{1}{2},+∞})$,都有函数$y=f(x)+\frac{m}{x}$的图象在$g(x)=\frac{e^x}{x}$的图象的下方?若存在,请求出整数m的最大值;若不存在,请说理由:(参考数据:$ln2=0.6931,\sqrt{e}=1.6487,\root{3}{e}=1.3956$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点F为抛物线y2=2px(p>0)的焦点,点M(2,m)在抛物线E上,且|MF|=3.
(1)求抛物线E的方程;
(2)过x轴正半轴上一点N(a,0)的直线与抛物线E交于A,B两点,若OA⊥OB,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数i(3+4i)=(  )
A.-4+3iB.4+3iC.3-4iD.3+4i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设变量x,y满足约束条件$\left\{\begin{array}{l}y≥0\\ x-y+1≥0\\ x+y-3≤0\end{array}\right.$则$z=\frac{x}{2}+y$的最大值为$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设等比数列{an}的各项均为正数,其前Sn项和为a1=1,a3=4,则an=2n-1;S6=63.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的一个焦点是(2,0),则其渐近线的方程为(  )
A.x±$\sqrt{3}$y=0B.$\sqrt{3}$x±y=0C.x±3y=0D.3x±y=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设P为有公共焦点F1,F2的椭圆C1与双曲线C2的一个交点,且PF1⊥PF2,椭圆C1的离心率为e1,双曲线C2的离心率为e2,若3e1=e2,则e1=$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)对任意实数x,y均有f(x)=f($\frac{x+y}{2}$)+f($\frac{x-y}{2}$).当x>0时,f(x)>0
(1)判断函数f(x)在R上的单调性并证明;
(2)设函数g(x)与函数f(x)的奇偶性相同,当x≥0时,g(x)=|x-m|-m(m>0),若对任意x∈R,不等式g(x-1)≤g(x)恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案