精英家教网 > 高中数学 > 题目详情

为何值时,关于的方程 的两根:

(1)为正数根;(2)为异号根且负根绝对值大于正根;(3)都大于1;(4)一根大于2,一根小于2;(5)两根在0,2之间。

答案见解析


解析:

关于方程根的讨论,结合二次函数图象与 轴的交点位置的充要条件即可求:即设方程两根为

1)

(2)

(3)

(4)

(5)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在(-1,1)上的函数f(x)是奇函数,且当x∈(0,1)时,f(x)=
2x4x+1

(1)求f(x)在(-1,1)上的解析式;
(2)判断f(x)在(0,1)上的单调性,并给予证明;
(3)当实数λ为何值时,关于x的方程f(x)=λ在(-1,1)上有解?

查看答案和解析>>

科目:高中数学 来源: 题型:

m为何值时,关于x的方程8x2-(m-1)x+(m-7)=0的两根,
(1)为正数;
(2)一根大于2,一根小于2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泸州一模)定义在R上的奇函数f(x)满足f(1-x)=f(x)且x∈[0,l]时,f(x)=
2x4x+1

(Ⅰ)求函数f(x)在[-l,l]上的解析式;
(II)当λ为何值时,关于x的方程f(x)=λ在[-2,2]上有实数解?

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市青浦区高三上学期期终学习质量调研测试数学试卷 题型:解答题

(本题满分16分) 本题共有2个小题,第1小题满分10分,第2小题满分6分.

定义在R上的奇函数有最小正周期4,且时,

(1)判断并证明上的单调性,并求上的解析式;

(2)当为何值时,关于的方程上有实数解?

 

查看答案和解析>>

同步练习册答案