精英家教网 > 高中数学 > 题目详情
8.对任意平面向量$\overrightarrow a、\overrightarrow b$,下列关系式中不恒成立的是(  )
A.$|{\overrightarrow a•\overrightarrow b}|≤|{\overrightarrow a}||{\overrightarrow b}|$B.$|{\overrightarrow a-\overrightarrow b}|≤|{|{\overrightarrow a}|-|{\overrightarrow b}|}|$C.${(\overrightarrow a+\overrightarrow b)^2}={|{\overrightarrow a+\overrightarrow b}|^2}$D.$(\overrightarrow a+\overrightarrow b)(\overrightarrow a-\overrightarrow b)={\overrightarrow a^2}-{\overrightarrow b^2}$

分析 根据平面向量数量积的定义与运算性质,对每个选项判断即可.

解答 解:对于A,∵|$\overline{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$|×|$\overrightarrow{b}$|×|cos<$\overrightarrow{a}$,$\overrightarrow{b}$>|,
又|cos<$\overrightarrow{a}$,$\overrightarrow{b}$>|≤1,∴|$\overrightarrow{a}$•$\overrightarrow{b}$|≤|$\overrightarrow{a}$||$\overrightarrow{b}$|恒成立,A正确;
对于B,由三角形的三边关系和向量的几何意义得,|$\overrightarrow{a}$-$\overrightarrow{b}$|≥||$\overrightarrow{a}$|-|$\overrightarrow{b}$||,∴B错误;
对于C,由向量数量积的定义得($\overrightarrow{a}$+$\overrightarrow{b}$)2=|$\overrightarrow{a}$+$\overrightarrow{b}$|2,C正确;
对于D,由向量数量积的运算得($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-$\overrightarrow{b}$)=$\overrightarrow{a}$2-$\overrightarrow{b}$2,∴D正确.
故选:B.

点评 本题考查了平面向量的数量积的定义和运算性质的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\sqrt{1+x}$+$\sqrt{1-x}$,
(1)求函数f(x)的定义域和值域;
(2)设F(x)=$\frac{a}{2}$•[f2(x)-2]+f(x)(其中a为参数),求F(x)的最大值g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.$\int_{-2}^m{\sqrt{-{x^2}-2x}}dx=\frac{π}{2}$,则m等于(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设函数f(x)定义域为D,若满足①f(x)在D内是单调函数;②存在[a,b]∈D使f(x)在[a,b]上的值域为[a,b],那么就称y=f(x)为“成功函数”.若函数g(x)=loga(a2x+t)(a>0且a≠1)是定义域为R的“成功函数”,则t的取值范围为(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x-2)=f(x+2),且当x∈[-2,0]时,$f(x)={(\frac{1}{2})^x}$-1,若在区间(-2,10]内,关于x的方程f(x)-loga(x+2)=0(a>1)恰有5个不同的实数根,则a的取值范围是(  )
A.$(2,\root{3}{12})$B.$(\root{3}{4},2\sqrt{2})$C.$(\root{3}{4},2)$D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.点(2,1)到直线y=$\frac{1}{2}$x+1的距离是(  )
A.$\frac{2}{5}$B.$\frac{2}{5}\sqrt{5}$C.$\frac{6}{5}\sqrt{5}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.利用秦九韶算法分别计算f(x)=8x5+5x4+3x3+2x+1在x=2与x=-1时的值,并判断多项式f(x)在区间[-1,2]上有没有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设f(x)的定义域为(-∞,0)∪(0,+∞),且f(x)是奇函数,当x>0时,f(x)=$\frac{x}{1-{3}^{x}}$.
(1)求当x<0时,f(x)的解析式;
(2)解不等式f(x)<-$\frac{x}{8}$.

查看答案和解析>>

同步练习册答案