(本小题满分15分)如图,在三棱柱中,已知,
,.
(Ⅰ)求直线与底面所成角正切值;
(Ⅱ)在棱(不包含端点)上确定一点的位置,
使得(要求说明理由);
(Ⅲ)在(Ⅱ)的条件下,若,求二面角的大小.
(Ⅱ)当E为中点时,.
,
,即. ----------------------------------- 6´
又,.
,,. --- 9´
(Ⅲ)取的中点,的中点,则∥,且,
,连结,设,连结,
则∥,且,
为二面角的平面角. --------------------------- 12´
, ,
∴二面角的大小为45°. ----------------------------- 15´
另解:以为原点,所在直线为轴建立空间直角坐标系.
则. - ------------------------- 2´
(Ⅰ),面的一个法向量.
设与面所成角为,则 .-- 5´
(Ⅱ)设,,则,,
由,得,所以为的中点. ------- 9´
(Ⅲ)由,得,,又,
可求得面的一个法向量,
面的一个法向量,----------------------------------- 12´
设二面角的大小为,则.----------- 14´
∴二面角的大小为45°. ----------------------------- 15´
【解析】略
科目:高中数学 来源:2012-2013学年福建省高三上学期期中理科数学试卷(解析版) 题型:解答题
(本小题满分15分)
已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若,试分别解答以下两小题.
(ⅰ)若不等式对任意的恒成立,求实数的取值范围;
(ⅱ)若是两个不相等的正数,且,求证:.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省高三下学期3月联考理科数学 题型:解答题
(本小题满分15分).
已知、分别为椭圆:的
上、下焦点,其中也是抛物线:的焦点,
点是与在第二象限的交点,且。
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点P(1,3)和圆:,过点P的动直线与圆相交于不同的两点A,B,在线段AB取一点Q,满足:,(且)。求证:点Q总在某定直线上。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年浙江省高三上学期第三次月考数学文卷 题型:解答题
(本小题满分15分)
如图已知,椭圆的左、右焦点分别为、,过的直线与椭圆相交于A、B两点。
(Ⅰ)若,且,求椭圆的离心率;
(Ⅱ)若求的最大值和最小值。
查看答案和解析>>
科目:高中数学 来源:2014届浙江省宁波市高一上学期期末考试数学 题型:解答题
(本小题满分15分)若函数在定义域内存在区间,满足在上的值域为,则称这样的函数为“优美函数”.
(Ⅰ)判断函数是否为“优美函数”?若是,求出;若不是,说明理由;
(Ⅱ)若函数为“优美函数”,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011年江苏省高二下学期期中考试理数 题型:解答题
(本小题满分15分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题.求:
(1)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第1次抽到理科题的条件下,第2次抽到文科题的概率
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com