精英家教网 > 高中数学 > 题目详情
设函数.
(Ⅰ)若,求的最小值;
(Ⅱ)若,讨论函数的单调性.
(Ⅰ)(Ⅱ)上递增

试题分析:(Ⅰ)时,.
时,;当时,.
所以上单调减小,在上单调增加
的最小值为
(Ⅱ)若,则,定义域为.

,所以上递增,
,所以上递减,
所以,,故.
所以上递增.
点评:第二小题求单调区间时,原函数的导数大于零(或小于零)的不等式不容易解,此时对导函数再次求其导数,判断其最值,从而确定原函数的导数的正负,得到原函数单调性
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数上是单调函数,则实数的取值范围是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分12分)已知函数.(Ⅰ) 求上的最小值;(Ⅱ) 若存在是常数,=2.71828)使不等式成立,求实数的取值范围;
(Ⅲ) 证明对一切都有成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数在点的切线方程为.
(Ⅰ)求函数的解析式;
(Ⅱ)设,求证:上恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知函数 
(1) 当时,求函数的最值;
(2) 求函数的单调区间;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知数列的首项,且.
(1)求数列的通项公式;
(2)设,求.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

满足仅在点处取得最小值,则的取值范围是(   )
A.(-1,2)B.(-2,4) C.(-4,0]D.(-4,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
若函数时取得极值,且当时,恒成立.
(1)求实数的值;
(2)求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数上是增函数,在上是减函数.
(1)求函数的解析式;
(2)若时,恒成立,求实数的取值范围;
(3)是否存在实数,使得方程在区间上恰有两个相异实数根,若存在,求出的范围,若不存在说明理由.

查看答案和解析>>

同步练习册答案