精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x3+ax2+bx+c在x=﹣ 与x=1时都取得极值,求a,b的值与函数f(x)的单调区间.

【答案】解;(1)f(x)=x3+ax2+bx+c,f′(x)=3x2+2ax+b
由f′(﹣ )= a+b=0,f′(1)=3+2a+b=0
解得,a=﹣ ,b=﹣2.
f′(x)=3x2﹣x﹣2=(3x+2)(x﹣1),函数f(x)的单调区间如下表:

x

(﹣∞,﹣

(﹣ ,1)

1

(1,+∞)

f′(x)

+

0

0

+

f(x)

极大值

极小值

所以函数f(x)的递增区间是(﹣∞,﹣ )和(1,+∞),递减区间是(﹣ ,1)
【解析】求出f′(x),因为函数在x=﹣ 与x=1时都取得极值,所以得到f′(﹣ )=0且f′(1)=0联立解得a与b的值,然后把a、b的值代入求得f(x)及f′(x),然后讨论导函数的正负得到函数的增减区间.
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的极值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线 (a>0,b>0)的中心为O,左焦点为F,P是双曲线上的一点 =0且4 =3 ,则该双曲线的离心率是( )
A.
B.
C.
+
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省数学学业水平考试成绩分为A、B、C、D四个等级,在学业水平成绩公布后,从该省某地区考生中随机抽取60名考生,统计他们的数学成绩,部分数据如下:

等级

A

B

C

D

频数

24

12

频率

0.1


(1)补充完成上述表格中的数据;
(2)现按上述四个等级,用分层抽样的方法从这60名考生中抽取10名,在这10名考生中,从成绩A等和B等的所有考生中随机抽取2名,求至少有一名成绩为A等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数在其定义域内是单调函数,求实数的取值范围;

(2)若,令为自然对数的底数),求证:存在,使

请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣5x+6=0},B={x|mx﹣1=0},且A∩B=B,求由实数m所构成的集合M,并写出M的所有子集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=ax(a>0且a≠1)在[1,2]上的最大值是M,最小值是m,且M=2m,则实数a=( )
A.
B.2
C.
且2
D.
或2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四组函数中,f(x)与g(x)是同一函数的一组是(
A.f(x)=|x|,g(x)=
B.f(x)=x,g(x)=( 2
C.f(x)= ,g(x)=x+1
D.f(x)=1,g(x)=x0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有这样一则问题:“今有良马与弩马发长安,至齐,齐去长安三千里,良马初日行一百九十三里,日增一十三里;弩马初日行九十七里,日减半里,良马先至齐,复还迎弩马.”则现有如下说法:

①弩马第九日走了九十三里路;

②良马前五日共走了一千零九十五里路;

③良马和弩马相遇时,良马走了二十一日.

则以上说法错误的个数是( )个

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=ekx+b(e=2.718…为自然对数的底数,k、b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是小时.

查看答案和解析>>

同步练习册答案