【题目】已知直线l:x+y+8=0,圆O:x2+y2=36(O为坐标原点),椭圆C: =1(a>b>0)的离心率为e= ,直线l被圆O截得的弦长与椭圆的长轴长相等.
(I)求椭圆C的方程;
(II)过点(3,0)作直线l,与椭圆C交于A,B两点设 (O是坐标原点),是否存在这样的直线l,使四边形为ASB的对角线长相等?若存在,求出直线l的方程,若不存在,说明理由.
【答案】解:(Ⅰ)∵圆心O到直线l:x+y+8=0的距离为 , ∴直线l被圆O截得的弦长为 ,
∵直线l被圆O截得的弦长与椭圆的长轴长相等,
∴2a=4,∴a=2,
∵椭圆的离心率为e= ,
∴c=
∴b2=a2﹣c2=1
∴椭圆C的方程为: ;
(Ⅱ)∵ ,∴四边形OASB是平行四边形.
假设存在这样的直线l,使四边形OASB的对角线长相等,则四边形OASB为矩形,因此有 ,
设A(x1 , y2),B(x2 , y2),则x1x2+y1y2=0.
直线l的斜率显然存在,设过点(3,0)的直线l方程为:y=k(x﹣3),
由 ,得(1+4k2)x2﹣24k2x+36k2﹣4=0,
由△=(﹣24k2)2﹣4(1+4k2)(36k2﹣4)>0,可得﹣5k2+1>0,即 .
∴ = ,
由x1x2+y1y2=0得: ,满足△>0.
故存在这样的直线l,其方程为
【解析】(Ⅰ)计算圆心O到直线l:x+y+8=0的距离,可得直线l被圆O截得的弦长,利用直线l被圆O截得的弦长与椭圆的长轴长相等,可求a的值,利用椭圆的离心率为e= ,即可求得椭圆C的方程;(Ⅱ)由 ,可得四边形OASB是平行四边形.假设存在这样的直线l,使四边形OASB的对角线长相等,则四边形OASB为矩形,因此有 ,设直线方程代入椭圆方程,利用向量的数量积公式,即可求得结论.
【考点精析】关于本题考查的椭圆的标准方程,需要了解椭圆标准方程焦点在x轴:,焦点在y轴:才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】定义在R上的奇函数f(x)满足:f(x+1)=f(x﹣1),且当﹣1<x<0时,f(x)=2x﹣1,则f(log220)等于( )
A.
B.﹣
C.﹣
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】F是抛物线C:y2=4x的焦点,过F作两条斜率都存在且互相垂直的直线l1 , l2 , l1交抛物线C于点A,B,l2交抛物线C于点G,H,则 的最小值是( )
A.8
B.8
C.16
D.16
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,4sinA+3cosB=5,4cosA+3sinB=2 ,则角C等于( )
A.150°或30°
B.120°或60°
C.30°
D.60°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.
(Ⅰ)求证:AM⊥平面EBC;
(Ⅱ)求二面角A﹣EB﹣C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= x2 , g(x)=alnx.
(1)若曲线y=f(x)﹣g(x)在x=1处的切线的方程为6x﹣2y﹣5=0,求实数a的值;
(2)设h(x)=f(x)+g(x),若对任意两个不等的正数x1 , x2 , 都有 >2恒成立,求实数a的取值范围;
(3)若在[1,e]上存在一点x0 , 使得f′(x0)+ <g(x0)﹣g′(x0)成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com