精英家教网 > 高中数学 > 题目详情

【题目】空间四边形ABCD中,AB=CD且异面直线AB与CD所成的角为30°,E,F为BC和AD的中点,则异面直线EF和AB所成的角为(
A.15°
B.30°
C.45°或75°
D.15°或75°

【答案】D
【解析】解:取AC的中点G,
连接GE与GF,则AB与CD(异面直线)所成角为30°,
∵EG∥AB,FG∥CD,
∴∠GEF=30°或150°,
而AB=CD,
则GE=GF,
∴∠GFE=75°或∠GFE=15°.
∴EF与AB所成的角是75°或15°.
故选D.

【考点精析】认真审题,首先需要了解异面直线及其所成的角(异面直线所成角的求法:1、平移法:在异面直线中的一条直线中选择一特殊点,作另一条的平行线;2、补形法:把空间图形补成熟悉的或完整的几何体,如正方体、平行六面体、长方体等,其目的在于容易发现两条异面直线间的关系).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在区间D上,如果函数f(x)为减函数,而xf(x)为增函数,则称f(x)为D上的弱减函数.若f(x)=
(1)判断f(x)在区间[0,+∞)上是否为弱减函数;
(2)当x∈[1,3]时,不等式 恒成立,求实数a的取值范围;
(3)若函数g(x)=f(x)+k|x|﹣1在[0,3]上有两个不同的零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,O为坐标原点,椭圆C1 + =1(a>b>0)的左、右焦点分别为F1 , F2 , 离心率为e1;双曲线C2 =1的左、右焦点分别为F3 , F4 , 离心率为e2 , 已知e1e2= ,且|F2F4|= ﹣1.

(1)求C1、C2的方程;
(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在其定义域内为增函数,求实数的取值范围;

(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B、C、D为圆O上的四点,直线DE为圆O的切线,AC∥DE,AC与BD相交于H点.

(1)求证:BD平分∠ABC;
(2)若AB=4,AD=6,BD=8,求AH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若不等式|2x﹣1|﹣|x+a|≥a对任意的实数x恒成立,则实数a的取值范围是(
A.(﹣∞,﹣ ]
B.(﹣ ,﹣ ]
C.(﹣ ,0)
D.(﹣∞,﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与抛物线的焦点相同 为椭圆的左右焦点为椭圆上任意一点面积的最大值为1

1求椭圆的方程

2直线交椭圆两点

i若直线的斜率分别为求证直线过定点并求出该定点的坐标

ii若直线的斜率时直线斜率的等比中项求△面积的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a为实数,函数f(x)=2x2+(x﹣a)|x﹣a|.
(1)若f(0)≥1,求a的取值范围;
(2)求f(x)的最小值;
(3)设函数h(x)=f(x),x∈(a,+∞),求不等式h(x)≥1的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(x+θ)+ cos(x+θ), ,且函数f(x)是偶函数,则θ的值为

查看答案和解析>>

同步练习册答案