【题目】在平面直角坐标系xy中,曲线C的参数方程为为参数),在以为极点,轴的非负半轴为极轴的极坐标系中,直线的极坐标方程为。
(1)求曲线C的极坐标方程;
(2)设直线与曲线C相交于A,B两点,P为曲C上的一动点,求△PAB面积的最大值.
科目:高中数学 来源: 题型:
【题目】某企业有甲、乙两条生产线生产同一种产品,为了检测两条生产线产品的质量情况,随机从两条生产线 生产的大量产品中各抽取了 40件产品作为样本,检测某一项质量指标值,得到如图所示的频率分布直方图,若,亦则该产品为示合格产品,若,则该产品为二等品,若,则该产品为一等品.
(1)用样本估计总体的思想,从甲、乙两条生产线中各随机抽取一件产品,试估计这两件产品中恰好一件为二等品,一件为一等品的概率;
(2)根据图1和图2,对两条生产线从样本的平均值和方差方面进行比较,哪一条生产线更好;
(3)从甲生产线的样本中,满足质量指标值在的产品中随机选出3件,记为指标值在中的件数,求的分布列和数学期望
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三角形的三个顶点的坐标分别为,,,则该三角形的重心(三边中线交点)的坐标为.类比这个结论,连接四面体的一个顶点及其对面三角形重心的线段称为四面体的中线,四面体的四条中线交于一点,该点称为四面体的重心.若四面体的四个顶点的空间坐标分别为,,,,则该四面体的重心的坐标为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为( )(参考数据:sin15°=0.2588,sin7.5°=0.1305)
A. 12B. 24C. 48D. 96
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方体的棱长为4,动点E,F在棱上,动点P,Q分别在棱AD,CD上。若,,,(大于零),则四面体PEFQ的体积
A.与都有关B.与m有关,与无关
C.与p有关,与无关D.与π有关,与无关
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆与直线相切于点,圆心在轴上.
(1)求圆的方程;
(2)过点且不与轴重合的直线与圆相交于两点,为坐标原点,直线分别与直线相交于两点,记,的面积分别是,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为( )(参考数据:sin15°=0.2588,sin7.5°=0.1305)
A. 12B. 24C. 48D. 96
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为( )(参考数据:sin15°=0.2588,sin7.5°=0.1305)
A. 12B. 24C. 48D. 96
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.
为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com