精英家教网 > 高中数学 > 题目详情

已知函数f(x)是定义在R上的单调函数满足f(-3)=2,,且对任意的实数a∈R有f(-a)+f(a)=0恒成立.
(Ⅰ)试判断f(x)在R上的单调性,并说明理由;
(Ⅱ)解关于x的不等式数学公式

解:(Ⅰ)结论:f(x)是R上的减函数.理由如下
∵对任意的实数a∈R有f(-a)+f(a)=0
∴f(-a)=-f(a)对任意的实数a∈R成立,可得函数f(x)是定义在R上的奇函数,
取x=0,得f(0)=0
∵f(x)在R上是单调函数,f(-3)=2>0=f(0)
∴f(x)为R上的减函数.
(Ⅱ)由f(-3)=2,不等式等价于
又∵f(x)为R上的减函数,∴原不等式可化为:
整理得:,解之得:x<-1或x>0
∴不等式的解集为(-∞,-1)∪(0,+∞).
分析:(I)根据函数奇偶性的定义,不难得到f(x)是定义在R上的奇函数,再根据已知条件函数是单调函数且f(-3)>f(0),可得函数是R上的减函数.
(II)原不等式可化为:,再由(I)的单调性可得,最后根据分式不等式的解法即可得到原不等式的解集.
点评:本题给出抽象函数为奇函数且在E上为减函数,求关于x的不等式的解集,着重考查了函数单调性的奇偶性等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)计算:[f(1)]2-[g(1)]2
(2)证明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)图象上的两点,且x1+x2=1.
(1)求证:y1+y2为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的条件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn为数列{an}的前n项和.求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

同步练习册答案