精英家教网 > 高中数学 > 题目详情

【题目】已知公差不为零的等差数列中,,且成等比数列,

1)求数列的通项公式;

2)数列满足,数列的前n项和为,若不等式对一切恒成立,求的取值范围.

3)设数列的前n项和为,求证:对任意正整数n,都有成立.

【答案】1;(2;(3)看解析.

【解析】

1)设等差数列的公差为,由已知,求出,即可得数列的通项公式;

2)由(1)可得,,利用错位相减法即可得出,代入不等式对一切恒成立,对分类讨论即可得出的取值范围;

3)当时,结论显然成立;当时,,化简证明即可.

(1)已知等差数列中,,设公差为,由已知

,所以

的通项公式为:

即:.

2)由(1)可得,

两式相减得:

解得:.

所以不等式化为对一切恒成立,

为偶数,则,即

为奇数,则,即

综上可得:.

3)证明:当时,结论显然成立;

时,由(2)知,

.

所以,对任意正整数n,都有成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C1ab0)的离心率e,且点P1)在椭圆C.

1)求椭圆C的方程;

2)若椭圆C的左焦点为F,右顶点为A,点Mst)(t0)是椭圆C上的动点,直线AMy轴交于点D,点Ey轴上一点,EFDFEA与椭圆C交于点G,若△AMG的面积为2,求直线AM的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】奇函数fx)在R上存在导数,当x0时,fx),则使得(x21fx)<0成立的x的取值范围为(

A.(﹣10)∪(01B.(﹣,﹣1)∪(01

C.(﹣10)∪(1+∞D.(﹣,﹣1)∪(1+∞

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019625日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人的得分(满分:100分)数据,统计结果如表所示:

得分

频数

25

150

200

250

225

100

50

1)由频数分布表可以认为,此次问卷调查的得分服从正态分布近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求

2)在(1)的条件下,市环保部门为此次参加问卷调查的市民制定如下奖励方案:

①得分不低于 “的可以获赠2次随机话费,得分低于的可以获赠1次随机话费;

②每次获赠的随机话费和对应的概率为:

获赠的随机话费(单位:元)

20

40

概率

现市民小王要参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列及数学期望.

附:①;②若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,ABCD为矩形,是以为直角的等腰直角三角形,平面平面ABCD

1)证明:平面平面PBC

2为直线PC的中点,且,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为为参数),直线经过点且倾斜角为.

1)求曲线的极坐标方程和直线的参数方程;

2)已知直线与曲线交于,满足的中点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201912月以来,湖北武汉市发现多起病毒性肺炎病例,并迅速在全国范围内开始传播,专家组认为,本次病毒性肺炎病例的病原体初步判定为新型冠状病毒,该病毒存在人与人之间的传染,可以通过与患者的密切接触进行传染.我们把与患者有过密切接触的人群称为密切接触者,每位密切接触者被感染后即被称为患者.已知每位密切接触者在接触一个患者后被感染的概率为,某位患者在隔离之前,每天有位密切接触者,其中被感染的人数为,假设每位密切接触者不再接触其他患者.

1)求一天内被感染人数为的概率的关系式和的数学期望;

2)该病毒在进入人体后有14天的潜伏期,在这14天的潜伏期内患者无任何症状,为病毒传播的最佳时间,设每位患者在被感染后的第二天又有位密切接触者,从某一名患者被感染,按第1天算起,第天新增患者的数学期望记为.

i)求数列的通项公式,并证明数列为等比数列;

ii)若戴口罩能降低每位密切接触者患病概率,降低后的患病概率,当取最大值时,计算此时所对应的值和此时对应的值,根据计算结果说明戴口罩的必要性.(取

(结果保留整数,参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为确定下一年度投入某种产品的生产所需的资金,需了解每投入2千万资金后,工人人数(单位:百人)对年产能(单位:千万元)的影响,对投入的人力和年产能的数据作了初步处理,得到散点图和统计量表.

1)根据散点图判断:哪一个适宜作为年产能关于投入的人力的回归方程类型?并说明理由?

2)根据(1)的判断结果及相关的计算数据,建立关于的回归方程;

3)现该企业共有2000名生产工人,资金非常充足,为了使得年产能达到最大值,则下一年度共需投入多少资金(单位:千万元)?

附注:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为(说明:的导函数为)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大约在20世纪30年代,世界上许多国家都流传着这样一个题目:任取一个正整数,如果它是偶数,则除以2;如果它是奇数,则将它乘以31,这样反复运算,最后结果必然是1.这个题目在东方被称为角谷猜想,世界一流的大数学家都被其卷入其中,用尽了各种方法,甚至动用了最先进的电子计算机,验算到对700亿以内的自然数上述结论均为正确的,但却给不出一般性的证明.例如取,则要想算出结果1,共需要经过的运算步数是(

A.9B.10C.11D.12

查看答案和解析>>

同步练习册答案