精英家教网 > 高中数学 > 题目详情
已知A、B、C为△ABC三内角,且sinA=
3
3
(1+cosA);
(1)求角A;
(2)若
1+sin2B
cos2B-sin2B
=-3,求tanC的值.
考点:两角和与差的正弦函数,同角三角函数间的基本关系
专题:计算题,三角函数的求值
分析:(Ⅰ)利用两角差的正弦公式化成2
3
sin(A-
π
6
)=
3
,进而求出A;
(Ⅱ)利用倍角公式及完全平方公式化简分子,利用平方差公式化简分母,求出tanB,由tanC=-tan(A+B),利用两角和的正切公式求解.
解答: 解:(1)由sinA=
3
3
(1+cosA),得3sinA-
3
cosA=
3

由两角差的正弦公式得:2
3
sin(A-
π
6
)=
3

∴sin(A-
π
6
)=
1
2

∴A=
π
3

(2)由
1+sin2B
cos2B-sin2B
=
(sinB+cosB)2
(cosB-sinB)•(cosB+sinB)

=
sinB+cosB
cosB-sinB
=
tanB+1
1-tanB
=-3

∴tanB=2
∴tanC=-tan(A+B)=
tanA+tanB
1-tanAtanB
=
5
3
+8
11
点评:解决本题的关键是对三角函数式的化简,在三角函数式化简时要注意选择恰当的公式,有目标的进行化简.第(2)问中注意弦函数的齐次式与切函数的转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足a1=
2
3
,an-an-1=4n-2(n≥2),记Tn=
3an
2n-1
,如果对任意的正整数n,都有Tn≥M,则实数M的最大值为(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-x2,求:
(1)f(x)在x=1处的切线的方程;
(2)f(x)的图象与x轴所围图形的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知0<x<
π
2
,求函数f(x)=
(sin2x+2)2
sin2x
的最小值为
 
,相应x的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知自由落体运动的速率v=gt(g为重力加速度),则物体在下落的过程中,从t=0到t=t0所走的路程为(  )
A、
1
2
gt02
B、gt02
C、
1
3
gt02
D、
1
4
gt02

查看答案和解析>>

科目:高中数学 来源: 题型:

要得到函数y=sin(2x+
π
3
)的图象,只需将函数y=sin2x的图象(  )
A、向左平移
π
3
个单位
B、向左平移
π
6
个单位
C、向右平移
π
3
个单位
D、向右平移
π
6
个单位

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a<b,则在下列的一段推理过程中,错误的推理步骤有
 
.(填上所有错误步骤的序号)
∵a<b,
∴a+a<b+a,即2a<b+a,…①
∴2a-2b<b+a-2b,即2(a-b)<a-b,…②
∴2(a-b)•(a-b)<(a-b)•(a-b),即2(a-b)2<(a-b)2,…③
∵(a-b)2>0,
∴可证得 2<1.…④

查看答案和解析>>

科目:高中数学 来源: 题型:

某物体的位移S(米)与时间t(秒)的关系是S(t)=3t-t2,则物体在t=2秒时的瞬时速度为(  )
A、1m/sB、2m/s
C、-1m/sD、7m/s

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b∈R,则“ab>0,且a>b”是“
1
a
1
b
”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案