【题目】函数f(x)=x2+bx+c对于任意实数t都有f(2+t)=f(2﹣t),则f(1),f(2),f(4)的大小关系为( )
A.f(1)<f(2)<f(4)
B.f(2)<f(1)<f(4)
C.f(4)<f(2)<f(1)
D.f(4)<f(1)<f(2)
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)已知函数是自然对数的底数, .
(1)求函数的单调递增区间;
(2)若为整数, ,且当时, 恒成立,其中为的导函数,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区以“绿色出行”为宗旨开展“共享单车”业务.该地区某高级中学一兴趣小组由20名高二级学生和15名高一级学生组成,现采用分层抽样的方法抽取7人,组成一个体验小组去市场体验“共享单车”的使用.问:
(Ⅰ)应从该兴趣小组中抽取高一级和高二级的学生各多少人;
(Ⅱ)已知该地区有, 两种型号的“共享单车”,在市场体验中,该体验小组的高二级学生都租型车,高一级学生都租型车.
(1)如果从组内随机抽取3人,求抽取的3人中至少有2人在市场体验过程中租型车的概率;
(2)已知该地区型车每小时的租金为1元, 型车每小时的租金为1.2元,设为从体验小组内随机抽取3人得到的每小时租金之和,求的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2009年为第1年,且前4年中,第x年与年产量f(x) 万件之间的关系如下表所示:
x | 1 | 2 | 3 | 4 |
f(x) | 4.00 | 5.58 | 7.00 | 8.44 |
若f(x)近似符合以下三种函数模型之一:f(x)=ax+b,f(x)=2x+a,f(x)=logx+a.
(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;
(2)因遭受某国对该产品进行反倾销的影响,2015年的年产量比预计减少30%,试根据所建立的函数模型,确定2015年的年产量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|x2﹣6x+8<0},B={x|(x﹣a)(x﹣3a)<0}.
(1)若a=1,求A∩B;
(2)若A∩B=,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的通项公式是.
(1)判断是否是数列中的项;
(2)试判断数列中的各项是否都在区间内;
(3)试判断在区间内是否有无穷数列中的项?若有,是第几项?若没有,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=log2(4x)log2(2x)的定义域为 . (Ⅰ)若t=log2x,求t的取值范围;
(Ⅱ)求y=f(x)的最大值与最小值,并求取得最值时对应的x的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com