设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为A,在x轴负半轴上有一点B,满足=,且AB⊥AF2.
(1)求椭圆C的离心率;
(2)若过A、B、F2三点的圆恰好与直线l:x-y-3=0相切,求椭圆C的方程;
(3)在(2)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0),使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.
科目:高中数学 来源:2011-2012学年山东省微山一中高二上学期期中理科数学试卷 题型:解答题
设F1、F2分别为椭圆C:=1(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为2.
(1)求椭圆C的焦距;
(2)如果=2,求椭圆C的方程.
查看答案和解析>>
科目:高中数学 来源:2013届山东省高二上学期期中理科数学试卷 题型:解答题
设F1、F2分别为椭圆C:=1(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为2.
(1)求椭圆C的焦距;
(2)如果=2,求椭圆C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆C:=1(a>b>0)的右准线l的方程为x=,短轴长为2.
(1)求椭圆C的方程;
(2)过定点B(1,0)作直线l与椭圆C相交于P,Q(异于A1,A2)两点,设直线PA1与直线QA2相交于点M(2x0,y0).
①试用x0,y0表示点P,Q的坐标;
②求证:点M始终在一条定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
设椭圆C:=1(a>b>0)的离心率为e=,点A是椭圆上的一点,且点A到椭圆C两焦点的距离之和为4.
(1)求椭圆C的方程;
(2)椭圆C上一动点P(x0,y0)关于直线y=2x的对称点为P1(x1,y1),求3x1-4y1的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com