精英家教网 > 高中数学 > 题目详情
以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,|
PA
|-|
PB
|=k
,则动点P的轨迹为双曲线;
②以过抛物线的焦点的一条弦AB为直径作圆,则该圆与抛物线的准线相切;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1
有相同的焦点.
其中真命题的序号为
 
(写出所有真命题的序号)
分析:对于①利用双曲线的定义判断正误即可;对应②通过抛物线的性质即可说明正误;对应③求出方程的两个根即可判断正误;对应④求出两条曲线的焦点坐标,即可判断正误.
解答:解:①不正确;若动点P的轨迹为双曲线,则|k|要小于A、B为两个定点间的距离.当|k|大于A、B为两个定点间的距离时动点P的轨迹不是双曲线.
②正确;不妨设抛物线为标准抛物线:y2=2px (p>0 ),即抛物线位于Y轴的右侧,以X轴为对称轴.
设过焦点的弦为PQ,PQ的中点是M,M到准线的距离是d.
而P到准线的距离d1=|PF|,Q到准线的距离d2=|QF|.
又M到准线的距离d是梯形的中位线,故有d=
|PF|+|QF|
2

由抛物线的定义可得:
|PF|+|QF|
2
=
|PQ|
2
=半径.
所以圆心M到准线的距离等于半径,
所以圆与准线是相切.
③正确;方程2x2-5x+2=0的两根分别为
1
2
和2,
1
2
和2可分别作为椭圆和双曲线的离心率.
④正确;双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1
有相同的焦点,焦点在x轴上,焦点坐标为(±
34
,0);
故答案为:②③④.
点评:本题主要考查了圆锥曲线的共同特征,考查椭圆和双曲线的基本性质,解题时要准确理解概念,基本知识的理解与应用.常见的结论需要牢记,解题时才能快速准确.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的命题中
①设A、B为两个定点,k为非零常数,|
PA
|-|
PB
|=k,则动点P的轨迹为双曲线;
②设定圆C上一定点A作圆的动点弦AB,O为坐标原点,若
OP
=
1
2
OA
+
OB
),则动点P的轨迹为椭圆;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线
x2
25
-
y2
9
=1与椭圆
x2
35
+y2=1有相同的焦点.
其中真命题的序号为
 
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,|
PA
|-|
PB
|=k
,则动点P的轨迹为双曲线;
②以定点A为焦点,定直线l为准线的椭圆(A不在l上)有无数多个;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④过原点O任做一直线,若与抛物线y2=3x,y2=7x分别交于A、B两点,则
OA
OB
为定值.
其中真命题的序号为
 
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为正常数,|
PA
|+|
PB
|=k
,则动点P的轨迹为椭圆;
②双曲线
x2
25
-
y2
9
=1
与椭圆
x2
35
+y2=1
有相同的焦点;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率,则0<a<3;
④和定点A(5,0)及定直线l:x=
25
4
的距离之比为
5
4
的点的轨迹方程为
x2
16
-
y2
9
=1

其中真命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的命题中:
①设A、B为两个定点,k为非零常数,|
PA
|-|
PB
|=k
,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动点弦AB,O为坐标原点,若
OP
=
1
2
(
OA
+
OB
)
,则动点P的轨迹为椭圆;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线
x2
35
-y2=1
和椭圆
x2
25
+
y2
9
=1
有相同的焦点.
其中真命题的序号为
(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四个关于圆锥曲线的命题中:
①双曲线
x2
16
-
y2
9
=1
与椭圆
x2
49
+
y2
24
=1
有相同的焦点;
②在平面内,设A、B为两个定点,P为动点,且|PA|+|PB|=k,其中常数k为正实数,则动点P的轨迹为椭圆;
③方程2x2-3x+1=0的两根可分别作为椭圆和双曲线的离心率;
④过双曲线x2-
y2
2
=1
的右焦点F作直线l交双曲线于A、B两点,若|AB|=4,则这样的直线l有且仅有3条.
其中真命题的序号为
①④
①④
(写出所有真命题的序号).

查看答案和解析>>

同步练习册答案