精英家教网 > 高中数学 > 题目详情

【题目】如图所示的几何体中,四边形是矩形,平面平面.

(1)求证:

(2)求棱锥的体积.

【答案】(1)见解析(2).

【解析】分析:(1)中点,根据平几知识得四边形为矩形,即得,再根据线面平行判定定理得结论, (2)先证AD垂直平面ABNM,再根据等体积法以及锥体体积公式得结果.

详解:

(1) 平面,取中点

连接

平面

四边形为矩形

平面

四边形为平行四边形

平面

平面

(2)以平面为底,为高

点睛:空间几何体体积问题的常见类型及解题策略

(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.

(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某同学在研究函数fx)=xR时,分别给出下面几个结论:

①等式f(-x)=-fx)在xR时恒成立;

②函数fx)的值域为(-1,1);

③若x1x2,则一定有fx1)≠fx2);

④方程fx)=xR上有三个根.

其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=奇函数,且

1)求实数p ,q的值.

2)判断函数fx)在上的单调性,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点,定直线 ,动圆过点,且与直线相切.

(Ⅰ)求动圆的圆心轨迹的方程;

(Ⅱ)过点的直线与曲线相交于 两点,分别过点 作曲线的切线 ,两条切线相交于点,求外接圆面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆,离心率,短轴,抛物线顶点在原点,以坐标轴为对称轴,焦点为

(1)求椭圆和抛物线的方程;

(2)设坐标原点为,为抛物线上第一象限内的点,为椭圆是一点,且有,当线段的中点在轴上时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数,其中是常数.

(Ⅰ)时,求曲线在点处的切线方程;

)若存在实数,使得关于的方程上有两个不相等的实数根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求的单调区间;

(2)证明:只有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程: 为参数),曲线的参数方程: 为参数),且直线交曲线两点.

(1)将曲线的参数方程化为普通方程,并求时, 的长度;

(2)巳知点,求当直线倾斜角变化时, 的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2+y24y+10,点M(﹣1,﹣1),从圆C外一点P向该圆引一条切线,记切点为T

1)若过点M的直线l与圆交于AB两点且|AB|2,求直线l的方程;

2)若满足|PT||PM|,求使|PT|取得最小值时点P的坐标.

查看答案和解析>>

同步练习册答案