(05年浙江卷理)(14分)
如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点O、D分别是AC、PC的中点,OP⊥底面ABC.
(Ⅰ)求证:OD∥平面PAB;
(Ⅱ)当k=时,求直线PA与平面PBC所成角的大小;
(Ⅲ) 当k取何值时,O在平面PBC内的射影恰好为△PBC的重心?
解析:解法一
(Ⅰ)∵O、D分别为AC、PC的中点:∴OD∥PA,又AC平面PAB,∴OD∥平面PAB.
(Ⅱ)∵AB⊥BC,OA=OC,∴OA=OC=OB,又∵OP⊥平面ABC,∴PA=PB=PC.
取BC中点E,连结PE,则BC⊥平面POE,作OF⊥PE于F,连结DF,则OF⊥平面PBC
∴∠ODF是OD与平面PBC所成的角.
又OD∥PA,∴PA与平面PBC所成角的大小等于∠ODF.
在Rt△ODF中,sin∠ODF=,∴PA与平面PBC所成角为arcsin
(Ⅲ)由(Ⅱ)知,OF⊥平面PBC,∴F是O在平面PBC内的射影.
∵D是PC的中点,若F是△PBC的重心,则B、F、D三点共线,直线OB在平面PBC内的射影为直线BD,∵OB⊥PC.∴PC⊥BD,∴PB=BC,即k=1..反之,,当k=1时,三棱锥O-PBC为正三棱锥,∴O在平面PBC内的射影为△PBC的重心.
解法二:
∵OP⊥平面ABC,OA=OC,AB=BC,∴OA⊥OB,OA⊥OP,OB⊥OP.
以O为原点,射线OP为非负x轴,建立空间坐标系O-xyz如图),设AB=a,则A(a,0,0).
B(0, a,0),C(-a,0,0).设OP=h,则P(0,0,h).
(Ⅰ)∵D为PC的中点,∴又∥,
∴OD∥平面PAB.
(Ⅱ)∵k=则PA=2a,∴h=∴可求得平面PBC的法向量
∴cos.
设PA与平面PBC所成角为θ,刚sinθ=|cos()|=.
∴PA与平面PBC所成的角为arcsin.
(Ⅲ)△PBC的重心G(),∴=().
∵OG⊥平面PBC,∴又∴,
∴h=,∴PA=,即k=1,反之,当k=1时,三棱锥O-PBC为正三棱锥.
∴O为平面PBC内的射影为△PBC的重心.
科目:高中数学 来源: 题型:
(09年江苏百校样本分析)(10分)挑选空军飞行学员可以说是“万里挑一”,要想通过需过“五关”――目测、初检、复检、文考、政审等. 某校甲、乙、丙三个同学都顺利通过了前两关,有望成为光荣的空军飞行学员. 根据分析,甲、乙、丙三个同学能通过复检关的概率分别是0.5,0.6,0.75,能通过文考关的概率分别是0.6,0.5,0.4,通过政审关的概率均为1.后三关相互独立.
(1)求甲、乙、丙三个同学中恰有一人通过复检的概率;
(2)设通过最后三关后,能被录取的人数为,求随机变量的期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
(08年莆田四中一模理) (14分)
由函数确定数列,,若函数的反函数 能确定数列,,则称数列是数列的“反数列”。
(1)若函数确定数列的反数列为,求的通项公式;
(2)对(1)中,不等式对任意的正整数恒成立,求实数的范围;
(3)设,若数列的反数列为,与的公共项组成的数列为;求数列前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com