【题目】为及时了解适龄公务员对开放生育二胎政策的态度,某部门随机调查了90位30岁到40岁的公务员,得到情况如表:
(1)完成表格,并判断是否有99%以上的把握认为“生二胎意愿与性别有关”,并说明理由;
(2)现把以上频率当作概率,若从社会上随机独立抽取三位30岁到40岁的男公务员访问,求这三人中至少有一人有意愿生二胎的概率.
(3)已知15位有意愿生二胎的女性公务员中有两位来自省妇联,该部门打算从这15位有意愿生二胎的女性公务员中随机邀请两位来参加座谈,设邀请的2人中来自省女联的人数为X,求X的公布列及数学期望E(X).
男性公务员 | 女性公务员 | 总计 | |
有意愿生二胎 | 30 | 15 | |
无意愿生二胎 | 20 | 25 | |
总计 |
附:
P(k2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
【答案】
(1)解:由于 = =4.5<6.635.
故没有99%以上的把握认为“生二胎意愿与性别有关”
(2)解:由题意可得,一名男公务员要生二胎意愿的概率为 = ,无意愿的概率为 = ,
记事件A:这三人中至少有一人要生二胎,且各人意愿相互独立
则 P(A)=1﹣ =1﹣ = .
答:这三人中至少有一人有意愿生二胎的概率为:
(3)解:X可能的取值为0,1,2
P(X=0)= = ;P(X=1)= = ;P(X=2)= = .
X | 0 | 1 | 2 |
P |
E(X)= =
【解析】(1)直接利用k2运算法则求解,判断生二胎意愿与性别是否有关的结论.(2)利用独立重复试验真假求解所求的结果即可.(3)求出X的可能值,求出概率,得到分布列,然后求解期望.
科目:高中数学 来源: 题型:
【题目】已知圆上的动点,点Q在NP上,点G在MP上,且满足.
(I)求点G的轨迹C的方程
(II)过点(2,0)作直线,与曲线C交于A、B两点,O是坐标原点,设 是否存在这样的直线,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线的方程若不存在,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前n项和为,且(n∈N*)
(1)求的通项公式;
(2)数列满足,求数列的前n项和;
(3)若对一切正整数n恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(选修4﹣4:坐标系与参数方程)
已知直线l过点P(﹣1,2),且倾斜角为 ,圆方程为 .
(1)求直线l的参数方程;
(2)设直线l与圆交与M、N两点,求|PM||PN|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中, 是正方形, 平面, , , , 分别是, , 的中点.
()求四棱锥的体积.
()求证:平面平面.
()在线段上确定一点,使平面,并给出证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC﹣A′B′C′中,AA′=2AC=2BC,E为AA′的中点,C′E⊥BE.
(1)求证:C′E⊥平面BCE;
(2)求直线AB′与平面BEC′所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图所示.
(1)求直方图中x的值;
(2)求月平均用电量的众数和中位数;
(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,侧面PAD是边长为2的等边三角形且垂直于底, 是的中点。
(1)证明:直线平面;
(2)点在棱上,且直线与底面所成角为,求二面角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班同学利用春节进行社会实践,对本地岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图。
(一)人数统计表: (二)各年龄段人数频率分布直方图:
(Ⅰ)在答题卡给定的坐标系中补全频率分布直方图,并求出、、的值;
(Ⅱ)从岁年龄段的“低碳族”中采用分层抽样法抽取人参加户外低碳体验活动。若将这个人通过抽签分成甲、乙两组,每组的人数相同,求岁中被抽取的人恰好又分在同一组的概率。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com